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ABSTRACT: The development of catalysts for the electro-
chemical N2 reduction reaction (NRR) with a low limiting
potential and high Faradaic efficiency is highly desirable but
remains challenging. Here, to achieve acceleration, we develop and
report a slab graph convolutional neural network (SGCNN), an
accurate and flexible machine learning (ML) model that is suited
for probing surface reactions in catalysis. With a self-accumulated
database of 3040 surface calculations at the density-functional-
theory (DFT) level, SGCNN predicted the binding energies,
ranging over 8 eV, of five key adsorbates (H, N2, N2H, NH, NH2)
related to NRR performance with a mean absolute error (MAE) of only 0.23 eV. SGCNN only requires the low-level inputs of
elemental properties available in the periodic table of elements and connectivity information of constituent atoms; thus, accelerations
can be realized. Via a combined process of SGCNN-driven predictions and DFT verifications, four novel catalysts in the L12 crystal
space, including V3Ir(111), Tc3Hf(111), V3Ni(111), and Tc3Ta(111), are proposed as stable candidates that likely exhibit both a
lower limiting potential and higher Faradaic efficiency in the NRR, relative to the reference Mo(110). The ML work combined with
a statistical data analysis reveals that catalytic surfaces with an average d-orbital occupation between 4 and 6 could lower the limiting
potential and potentially overcome the scaling relation in the NRR.

■ INTRODUCTION

Copious amounts of ammonia (NH3), the major component
of fertilizer, are produced globally (>145 million tons/year).1

Currently, NH3 production relies heavily on the energy-
intensive, methane-based Haber−Bosch process (HBP). The
HBP requires very harsh conditions (pressure 150−200 atm;
temperature 300−500 °C) using pure hydrogen, which is
mostly sourced from natural gas via steam reforming.2,3 As a
result, ammonia production today contributes significantly to
greenhouse gas emissions and climate change. As an alternative
to conventional HBP, the electrochemical reduction of N2 to
NH3 has recently been pursued, as it offers more energy-
efficient and eco-friendly (no CO2 emission) production
routes.4−8

Tremendous efforts have recently been made to develop
catalysts for the electrochemical N2 reduction reaction (NRR).
A variety of catalysts have been studied both theoretically and
experimentally, such as Ru,9,10 Fe,5 Fe2O3,

11,12 Au,13−15 N-
doped carbon,16,17 and nitride monolayers,18,19 but the
ammonia production rates obtained with these catalysts are
far from satisfactory (on the order of tens of ugNH3

/mgcat
−1

h−1). In addition, the NRR suffers from low Faradaic
efficiencies (selectivity), mainly due to the competing
hydrogen evolution reaction (HER). Many recent reports
quantitatively compare the energetics between the NRR and

HER20 and suggest approaches to suppress the HER, which
include controlling the ligands in molecular catalysts,21

screening over single-atom catalysts,22 and designing new
electrolytes.23 Despite these strategies, NRR is still plagued by
low Faradaic efficiencies, typically much less than 30%. In light
of these studies, the development of more productive and
selective catalysts for the NRR is highly desired but remains
slow and challenging.
Examining the potential catalyst material space via high-

throughput experiments and/or first-principles calculations is
costly enough to be practically impossible. To overcome this
limitation, machine learning (ML) has recently emerged as a
powerful and complementary tool to potentially accelerate new
material discovery.24−33 ML models have been developed to
disentangle the complex catalyst−adsorbate interactions for
various reactions, including CO2 reduction,24−26,28−30 C−C
cross-coupling reactions,27 NO decomposition,32 and syngas
reactions;33 however, an ML model for the NRR has yet to be
developed. In addition, the utility of these models for screening
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remains challenging from two perspectives. First, many models
incorporate ab initio-level (e.g., density functional theory
(DFT)) surface features, such as d-band characteristics, as key
inputs, which require additional DFT calculations to prepare
the ML input; thus, ML-driven acceleration has not been
realized. Second, the previous ML models are trained only for a
specific type of crystal structure or adsorbate; no universal
model capable of probing various catalytic reactions is available
yet.
Herein, we adopt a graph-based convolutional neural

network (GCNN) to overcome the aforementioned limi-
tations. In the GCNN scheme, material structures are flexibly
encoded into graphs whose vertices and edges correspond to
feature vectors of atoms and bonds. Indeed, the graph
representation in ML has been successfully applied to
molecular systems34−37 and bulk solids.38−40 However, the
application of this approach to surface−adsorbate systems, in
which catalytic reactions are typically modeled, remains
nonexistent. In this article, we first develop and report a slab
graph convolutional neural network (SGCNN) that is
applicable to surface reactions in catalysis. SGCNN overcomes
the limitations of previously available models. First, SGCNN
only requires the inputs of elemental properties available in the
periodic table of elements and connectivity information of
constituent atoms; thus, ML-driven accelerations in catalyst
development can be realized. Second, owing to the flexible
graph-based encoding of structural information, SGCNN can
be developed as a universal model that is applicable to diverse
types of catalysts and adsorbates.
With our own database of 3040 surface DFT calculations,

SGCNN predicts the binding energies, ranging over 8 eV, of
five adsorbates (H, N2, N2H, NH, and NH2) that are directly
related to NRR performance with a mean absolute error
(MAE) of only 0.23 eV. Through a sequential process of
SGCNN-driven screening and DFT verification, we propose
four novel catalysts in the L12 crystal space, including
V3Ir(111), Tc3Hf(111), V3Ni(111), and Tc3Ta(111), that
satisfy the requirements of negative formation energy
(stability), a low limiting potential, and high Faradaic
efficiency. The ML work combined with statistical data
analysis suggests that catalytic surfaces with an average d-
orbital occupation between 4 and 6 could potentially lower the
limiting potential of the NRR. To the best of our knowledge,
this work is the first demonstration that ML accelerated the
identification of improved catalysts for ammonia production.
The catalysis communities researching other chemical
reactions may benefit from the SGCNN-based workflow.

■ RESULTS
Adsorption Energies as NRR Performance Descrip-

tors. Out of three possible associative NRR mechanisms
(distal, alternating, and enzymatic),19,41,42 the distal pathway
(*N2 → *NNH → *NNH2 → *N → *NH → *NH2 →
*NH3) is dominant in flat slab models composed of transition
metals, as shown in previous studies43,44 and our own
calculations (Figure S1), and thus focused on in this work.
Two NRR properties are studied, i.e., (1) the limiting potential
and (2) the Faradaic efficiency (or selectivity). Regarding the
limiting potential, recent studies on the NRR over low-index
surfaces of various pure metals suggest that one of the
following two protonation steps governs the limiting
potential:43,44,45 *N2 + H+ + e− → *N2H (*N2 → *N2H
hereafter) vs *NH + H+ + e− → *NH2 (*NH → *NH2

hereafter). DFT-computed free energy (ΔG) diagrams for
associative NRR pathways on Ru(001) and Mo(110) are
shown in Figure 1a. The details of the free energy corrections
are elaborated in the Methods section and Table S1. The two

Figure 1. Adsorption energies as NRR performance descriptors. (a)
Free energy (ΔG) diagrams for associative NRR pathways on
Ru(001) and Mo(110). PDSs are highlighted with arrows.
Corresponding surface/adsorbate structures are shown on top with
blue, white, and purple atoms representing N, H, and Ru (or Mo). (b)
Two-dimensional (2D) contour plot of UL as a function of potential
limiting steps for two cases (*N2 + H+ + e− → *N2H vs *NH + H+ +
e− → *NH2). The calculation results obtained for 23 transition metals
(close-packed surface) are added on the map. (c) Comparison of the
free energies of N2 and H adsorbates for 23 transition metals.
Promising zones in both (b) and (c) are referenced to Mo(110).
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surfaces of Ru(001) and Mo(110) are shown as examples for
each potential-determining step (PDS), *N2 → *N2H and
*NH → *NH2. The free energy diagrams of other metal cases
are available in Figure S2. For each transition metal, the most
stable, low-index surface is selected: (111) for fcc, (110) for
bcc, and (001) for hcp metals. All of these calculations reveal
that the PDS is *N2 → *N2H for most late transition metals
(group numbers (GRs) 7−11, e.g., Fe, Ru, Rh, Ni, Pd), but it is
*NH → *NH2 for most early transition metals (GRs 3−6, e.g.,
Sc, Ti, Mo), which agrees with the literature.43,44

The minimum applied voltage required to make the NRR
pathway exergonic in all steps is defined as the limiting
potential (UL). The energetics presented in Figure 1b assume
that the PDS is either *N2 → *N2H or *NH → *NH2, and UL
is determined as the negative of the maximum of
(ΔGN2H−ΔGN2

) and (ΔGNH2
−ΔGNH), divided by the electron

charge (e). The UL values of 23 metal surfaces are marked on
the map in Figure 1b, confirming a known scaling relation.43 It
should be noted that a strategy to overcome the scaling
relation is critical to discover improved catalysts, but such a
strategy has yet to be developed. Of the 23 metal surfaces,
Mo(110) exhibits the lowest |UL| of 0.92 V, and most others

exhibit |UL| values higher than 1.0 V. Our finding that
Mo(110) has the lowest |UL| among transition metals is
consistent with previously reported theoretical evaluations for
the NRR,43,44 although no experimental reports of Mo for the
NRR are yet available due to notorious oxidation issues. We
highlight the promising zone of −0.92 V < UL ≤ 0 V, as any
materials positioned in this zone would require a smaller
limiting potential than Mo(110) does.
The other important property for the NRR is Faradaic

efficiency. The Faradaic efficiencies of previously studied
catalysts are very low (typically much below 30%), mainly due
to competition with the HER. In this context, the binding
energy difference between *N2 and *H, defined as F = ΔGN2

−
ΔGH, on catalyst surfaces can serve as an excellent descriptor
to estimate adsorption competitions of N2 and H species and
consequently to determine Faradaic efficiency.22 The more
negative F is for a catalyst material, the higher Faradaic
efficiency the material likely exhibits. Figure 1c compares the
DFT-computed ΔGN2

and ΔGH values of 23 transition metals.
Here, we also define a promising zone of F less than −0.18 eV
(Mo(110) value). Note that a few other surfaces, including

Figure 2. Database generation. (a) A portion of the periodic table of elements (GRs 3−12 and PRs 4−6). (b) Two types of binary catalyst systems
(172 OIs and 263 CS systems). An example structure and distributions (over Ef for OI type and ε for CS type) are shown. For both types, samples
shaded in yellow are selected for DFT surface calculations. (c) Schematic of the catalytic system with five key adsorbates in the NRR (upper).
Binding energy populations (ΔEads.) for each adsorbate (lower).
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Ag(111) and Au(111), are better than Mo(110) in the F
criterion; however, the limiting potentials of these elements are
too high to be effective for the NRR.
Database Generation. The foregoing analysis indicates

that the binding energies of five adsorbates (H, N2, N2H, NH,
and NH2) are directly related to NRR performance. Using
DFT surface calculations, we generated our own database of
3040 binding energies for these five adsorbates as shown in
Figure 2. A total of 465 catalysts are modeled in a slab

geometry, including 30 unary and 435 binary systems. The
binary systems are either ordered intermetallics (OIs) or core−
shell (CS)-type alloys composed of transition-metal elements
in period numbers (PRs) 4−6 and GRs 3−12 in the periodic
table of elements (Figure 2a,b). The catalyst systems are
selectively chosen as follows. Binary OIs have either L10 or B2
crystal structures with low bulk formation energy, i.e., Ef < 0.1
eV (172 systems). CS-type alloys are built in the most stable
crystal structure of core elements (fcc, bcc, or hcp) with |ε| <

Figure 3. SGCNN development and performance. (a) Schematic describing the main architecture of the SGCNN model. Each B and S1 (or S2)
represent the bulk graph and surface graph with the top layer (or top two layers), respectively. Method (b) Comparison of MAE values for five
different graph structures (B, S1, S2, B + S1, and B + S2). (c, d) 2D histogram comparing the predicted adsorption energies using the SGCNN
model and DFT computation: (c) case in which only the bulk graph is used and (d) case in which B and S2 are simultaneously used (B + S2). (e)
Evolution of loss function, J, with increasing number of training steps (epochs). (f) Comparison of MAE values for H, N2, N2H, NH, and NH2
adsorbates, with the dashed line representing the MAE of the total.
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5%, where ε denotes the shell strain experienced due to the
lattice mismatch with core elements (263 systems). For slab
surface calculations, the closest-packed surfaces of each crystal
structure were considered: (111) for fcc metals or L10
compounds, (110) for bcc metals or B2 compounds, and
(001) for hcp metals. See the Methods section for details of
the database generation and DFT calculations.
For each catalyst material, five different adsorbates (H, N2,

N2H, NH, and NH2) are considered because the binding
energies of these adsorbates (ΔEads) are directly related to the
determination of UL or F (Figure 2c). The interaction
chemistry between the catalyst surface and adsorbates varies
substantially with adsorbate type, as confirmed by the ΔEads
variation for each adsorbate. For *H or *N2, for instance, ΔEads
is relatively small and ranges over only ∼2 eV, in contrast to
the values of the other three adsorbate cases (*N2H, *NH, and
*NH2), for which ΔEads is generally larger in magnitude and
the variations are also large, exceeding ∼6 eV. We highlight
that the database (3040 data) is uniformly sampled over a wide
range of chemical elements (30 elements), catalyst materials
(OI and CS types), adsorbates (5 types), and binding energies
(over 8 eV). Such wide and uniform sampling is critical for ML
model training and test.
SGCNN Development and Performance. With the

database established, we now introduce a new ML model,
namely, SGCNN. SGCNN is an extended model of the crystal
graph CNN (CGCNN) that is applicable to bulk solids.38

Although CGCNN has proven its excellence in predicting

several bulk properties including the bulk formation energy,
band gap, and elastic constants, surface-related properties
cannot be tested because the graph structure is limited to bulk
solids. Hence, the model cannot be applied to catalyst systems,
which involve mostly surface reactions. To solve this problem
and to incorporate surface effects, we constructed two
independent graphs (Figure 3a). One is a bulk graph (B),
which is identical to the one in the CGCNN model, and the
other is a surface graph (S1 or S2), which is based on
adsorbates and the top (S1) or top two (S2) surface layers. In
each graph, the nodes represent atoms, and the edges represent
connections between atoms. Convolution layers and a pooling
layer were built on top of the bulk and surface graphs. Two
pooled vectors originating from the bulk and surface graphs are
concatenated, and the result is related to the adsorbate binding
energy via fully connected layers (FCLs). The details regarding
slab graph construction, convolution functions, pooling
functions, hyperparameter tuning, loss functions, regulariza-
tion, and code availability are well elaborated in the
Methods section.
SGCNN performs very well in predicting adsorbate binding

energies, as shown in Figure 3b−d. For optimization, we tested
five graphs: B (bulk graph), S1 (surface graph with top 1 layer),
S2 (surface graph with top 2 layers), B + S1, and B + S2.
Unsurprisingly, the bulk-only graph (B) performs very poorly
(Figure 3c), as it does not incorporate surface effects. S2 (or B
+ S2) performs better than S1 (or B + S1), which likely
indicates that both the top and subsurface layers interact with

Figure 4. Feature engineering and occlusion sensitivity tests. (a) Types of atomic input features (12 elemental properties for Ni element as an
example) (b) Feature optimization test. MAE values as a function of various feature combinations. Blue points/lines denote the minimum value at
each feature number. (c, d) Occlusion sensitivity tests. (c) ΔMAE (the increase in MAE) as a function of occluded feature types in each bulk or
surface graph. (d) Slab geometries (TaAu−L10−(111) system) with each atom colored by the magnitude of ΔMAE upon its occlusion. All five
adsorbates (N2, N2H, NH, NH2, and H) are considered in this test.
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adsorbates. Among the five graphs, B + S2 performs the best,
leading to an MAE of 0.23 eV (Figure 3d), estimated after 5-
fold cross-validations, where no overfitting phenomenon
occurs, as shown in Figure 3e. Previous ML models primarily
developed for CO2 reduction catalysis also report comparable
MAE or root-mean-squared error (RMSE) values of
approximately 0.12−0.3 eV for CO binding energy pre-
dictions.28−30 However, it is important to note that the binding
energies in our database range over 8 eV, in contrast to
previous studies in which CO binding energies were reported
to range over only approximately 2 eV. A detailed comparison
of the prediction accuracy with that of previous models in the
literature is provided in Table S2.
In Figure 3b, we report the results for different catalyst types

(OI vs CS). Regardless of the graph structure, the surface−
adsorbate interactions for OIs are relatively difficult for
SGCNN to learn compared to those for CSs. For the B + S2
structure, for instance, the MAE determined based on the OI
data is 0.34 eV, while the MAE determined based on the CS
data is much smaller at 0.14 eV. The reason is that, for CS
data, the adsorption energies are strongly dependent on the
shell elements alone (with little dependence on the core
elements), which simplifies the surface interaction chemistry.
We also report the prediction accuracy by adsorbate type (H,
N2, N2H, NH, and NH2) in Figure 3f. The variation in MAE
values is fairly small over all adsorbates: the difference between
the smallest and largest MAE is less than 0.08 eV. Interestingly,
the effect of the binding energy range of each adsorbate dataset
(e.g., ∼2 eV for *N2 and ∼6 eV for *NH) on the final MAE
values is relatively weak; fairly uniform MAEs were observed
for all adsorbates.
The above analysis highlights the superior flexibility of the

SGCNN model. The introduction of a graph network makes
SGCNN highly adapted to structural variations. SGCNN is
tolerant of the diverse data resulting from different crystal
spaces for catalyst materials (e.g., fcc, bcc, hcp, L10, B2, and
CS-type), exposed surfaces ((111), (110), and (001)), and
adsorbate types and sites (in our work, five types and up to
four sites per adsorbate type). These diverse data (>3000) can
simultaneously be used for the SGCNN training; as a result, a
trained SGCNN with a single set of weight matrices can
accurately predict the binding energies of such diverse cases
(Figures 3f and S3). In contrast, other regression models that
do not utilize graph networks are much less tolerant of data
diversity due to their fixed architecture for the input feeding,
and therefore, they are trained with only a small number of
data (<250, Table S2) in a limited chemical space (in most
cases, a single crystal structure and a single adsorbate).26,28−30

Low-Level Input Features. The level of input features
used for SGCNN training is critical for the purpose of
accelerated material discovery. Previous studies have used ab
initio-level surface features, such as d-band characteristics (d-
band center or shape) as key inputs.28,30 These models capture
the catalyst−adsorbate interactions well, likely owing to the
strong correlation (d-band theory) between the d-band center
and adsorption energies.46,47 However, the use of these models
for accelerated screening processes remains a challenge
because they require additional DFT computations to prepare
ML inputs. SGCNN can overcome this limitation since it only
requires inputs of elemental properties available in the periodic
table of elements and connectivity information of constituent
atoms. Twelve elemental properties were considered (Figure
4a): GR, PR, Pauling scale electronegativity (EN), 1st

ionization energy (IE, in eV), electron affinity (EA, in eV),
density, atomic weight (AW, in g/mol), covalent radius (in Å),
atomic volume (AV, in cm3/mol), melting point (in °C),
boiling point (in °C), and effective nuclear charge (Zeff).

48

Some specific partial combination of these features would
lead to a minimum prediction error, and we carried out a
process to identify that error. Because exploring all possible

combinations ∑ = Cn n1
12 = 4095 combinations) is too costly, the

process was performed in a more efficient manner (Figure 4b).
Out of the 12 features, the feature that yielded the smallest
error when used alone (in this case, GR) was adopted first.
Then, the next feature that reduced the error the most when
combined with the first was added. The process was
terminated when the addition of any available feature no
longer reduced the error but instead caused overfitting. The
best combination leading to the minimum MAE of 0.23 eV
consists of only five features, i.e., GR, EN, AV, EA, and AW.
The addition of any feature to this combination undermines
the prediction accuracy, as overfitting occurs (inset of Figure
4b). It should be noted that model training with GR alone
leads to an MAE of 0.28 eV, indicating its superior importance
in predicting adsorption energies. Since the GR of an element
is linearly correlated with the d-block electron number, it likely
serves as an alternative descriptor of the d-band center of the
catalyst material.

Key Learning Components Revealed by the Occlu-
sion Sensitivity Test. The occlusion sensitivity test49 is
performed to quantify the importance of each feature or atom
in the model training performances and thereby to extract the
main components that SGCNN has learned. Figure 4c shows
the increase in MAE (ΔMAE) when a specific feature of atom
nodes in either the bulk or surface graph is occluded, i.e.,
nullified with all-zero entries. The test reveals the strong
sensitivity of adsorption energies to the features of the surface
graph relative to those of the bulk graph. In particular, the
occlusion of the GR of constituent elements in the surface
graph leads to the most severe malfunction of SGCNN,
resulting in a ΔMAE of approximately 1.0 eV, compared to
cases involving the other four features (ΔMAE between ∼0.1
and 0.2 eV).
With TaAu(111) as an example, an occlusion sensitivity test

is carried out for each constituent atom (Figure 4d). Each
atom is colored by the magnitude of ΔMAE upon its
occlusion. All five adsorbates are considered in this test, and
with no exception, adsorbates and their first-nearest neighbors
(atoms in deep red) turn out to be particularly important in
the model functioning. Even surface atoms, when not
connected to the adsorbate, are found much less influential.
This analysis confirms that the training process enables
SGCNN to mainly learn the local environments at catalytic
surfaces. Therefore, the proper construction of a surface graph
(in particular, connectivity information around adsorbates)
would be critical for SGCNN to learn the surface interactions
and consequently to predict adsorption energies accurately.

Statistical Data Analysis. t-SNE analysis50,51 was
performed to group catalyst materials based on UL values.
Because the binding energies of four adsorbates (N2, N2H,
NH, and NH2) determine UL, we first computed the Pearson
correlation coefficient (ρcorr) between the binding energy of
each adsorbate and UL and identified the NH2 species as the
most strongly correlated with ρcorr = 0.73 (Figure S4). Thus,
the feature vectors following the pooling process in SGCNN
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for NH2 cases were used in t-SNE analysis. In Figure 5a, each
site (representing each catalyst material) is colored according

to its UL value. The low |UL| (<1.0 eV) vs high |UL| (>2.0 eV)
regions are clearly separated in space and distinguished by
color (yellow vs blue). The low |UL| region consists mostly of
OI-type materials (●) rather than CS-type materials (⧫). This
finding implies that some binary OI compounds may overcome
the known linear relations (the line in Figure 1b) and
potentially lie in the promising UL zone, whereas most CS-type
materials are unlikely to do so. This difference is likely because
the exposed surfaces of CS-type alloys are identical to pure
metal cases, and the strain effect (due to core and shell lattice
mismatch) is minor; thus, the performance of CS-type alloys
does not deviate from the pure metal regime. In contrast,
intermetallics have mixed elements on the exposed surface,
likely causing energetics that are not observed for pure metals.
Another t-SNE analysis (Figure 5b) was performed using the

same feature vectors in Figure 5a, with each site colored by
d*−5, where d* is the average d-orbital occupation of the top
surface layer: d* = (dA + dB)/2 for OIs and dshell for CS
materials, where dX is the d-block electron number of the
element X. The t-SNE results in Figure 5a,b show high
similarity between the color distributions, leading to a
statistical inference that low |UL| materials mostly exhibit d*
values between 4 and 6. For binary OIs such as L10 and B2
crystals to satisfy 4 ≤ d* ≤ 6, one element should be an early
transition metal (ETM; GRs 3−5 in Figure 2a) and the other
element, a late transition metal (LTM; GRs 7−11 in Figure

2a). Indeed, the catalyst materials in our database requiring
smaller limiting potential than Mo(110) consist mostly of one
ETM and the other LTM so that d* lies between 4 and 6.
To quantitatively understand the relationship between d*

and UL, the trend of binding energies of each adsorbate (ΔGN2
,

ΔGN2H, ΔGNH, and ΔGNH2
) with d* is analyzed in Figure 5c.

All adsorbates tend to bind to catalyst surfaces more strongly
with decreasing d* (or increasing d-band center, Figure S5);
however, it should be noted that the sensitivity, estimated by
the slope of each fitted line, differs substantially by adsorbate
types. For instance, the slope for the N2 case is ∼0.06 eV and
that for N2H is ∼0.62 eV, indicating much stronger sensitivity
of ΔGN2H to d* than ΔGN2

. In Figure 5d, the differences in ΔG
(ΔGN2H−ΔGN2

or ΔGNH2
−ΔGNH), the maximum of which

determines UL, are shown with d* variations. Because of the
aforementioned slope differences, ΔGN2H−ΔGN2

increases with

d*, whereas ΔGNH2
−ΔGNH decreases with d*, and these two

curves cross over at around d* = 5.5. This quantitative analysis
adequately explains why materials requiring small limiting
potentials are mostly discovered in the region of 4 ≤ d* ≤ 6
(quasi-plateau of UL) and further supports d* as a simple
orbital-occupation guideline to lower the limiting potential in
the NRR.

SGCNN-Driven Prediction of Novel Catalyst Candi-
dates. We now utilize the trained SGCNN model to
accelerate the discovery of novel catalysts that were not parts
of our training database. The target crystal space is L12 ordered
structures (A3B) with the constituent elements (A and B) in
PRs 4−6 and GRs 3−13, as shown in Figure 2a. The closest-
packed (111) surfaces of a total of 870 (30P2) candidate
catalysts were chosen for tests (Figure 6a).
A fully ML-driven screening process (Figure 6b) is

performed based on the following three criteria: (i) stability,
estimated by Ef; (ii) limiting potential; and (iii) Faradaic
efficiency, estimated by F. For Ef prediction, we use the original
CGCNN model.38 CGCNN has proven its excellence in
predicting Ef with a very small MAE of 0.039 eV/atom for
28 046 bulk structures in the Materials Project database.52 Out
of a total of 870 candidates, 364 materials with negative Ef are
screened first and considered in the subsequent processes. The
latter two steps are based on the SGCNN predictions of the
adsorption energies of H, N2, N2H, NH, and NH2 species. The
next criterion is a lower limiting potential than Mo(110), i.e., |
UL| < 0.92 + T (V), where T (tolerance) is 0.23, which is
adopted from the MAE value of the pretrained SGCNN
model. Note that T is included in the screening criterion to
complement the inevitable error in ML predictions. The last
criterion is F < −0.18 + T (eV), toward an improved Faradaic
efficiency relative to Mo(110). As shown in Figure 6c, only 10
materials finally remained and deserve DFT verification along
an entire NRR pathway and future experimentations. Overall,
the SGCNN-based screening process substantially narrows
down the search space from a total of 870 to only 10 surfaces.
A full list of 10 screened materials is available in Table S3.

DFT Verification of Full NRR Paths for Promising
Catalysts. DFT calculations are performed for the 10
screened materials to confirm that the ML predictions are
reliable even in the L12 crystal space. First, we compare the Ef
values for their bulk phases predicted by CGCNN vs DFT
models, as summarized in Table S3. The MAE value is less
than 0.05 eV/atom, similar to the reported accuracy (∼0.04

Figure 5. Statistical data analysis to reveal correlations between d*
and UL. (a) t-SNE analysis of feature vectors of NH2 adsorbate cases
with the color bar representing UL values. The x and y axes represent a
reduced 2D feature space. Low |UL| and high |UL| zones are
highlighted. (b) t-SNE analysis using the same feature vectors with
the color bar representing d*−5. (c) Average ΔGN2

, ΔGN2H, ΔGNH,

and ΔGNH2
values as a function of d*, with the bars of standard error

of the mean. The slopes of the fitted linear lines are 0.06, 0.62, 0.43,
and 0.26 eV for ΔGN2

, ΔGN2H, ΔGNH, and ΔGNH2
, respectively. (d)

Average ΔGN2H−ΔGN2
or ΔGNH2

−ΔGNH values as a function of d*,
with the bars of standard error of the mean. The yellow shade
highlights the region of 4 ≤ d* ≤ 6, where materials requiring small
limiting potentials are the most likely to be discovered.
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eV/atom) of the original work.38 Second, Figure 6d compares
the adsorption energies (H, N2, N2H, NH, and NH2) between
the SGCNN and DFT predictions, and the MAE value is
found to be 0.35 eV. This value is approximately 0.1 eV larger
than the MAE (0.23 eV) from the model development stage.
Although slightly increased, the prediction error in the L12
space is still small enough to substantially improve the
efficiency of the NRR catalyst search.
The entire NRR pathway for these materials is investigated

by DFT computations, which show that four of the 10
materials indeed perform better than the reference Mo(110) in
terms of both criteria of |UL| < 0.92 V and F < −0.18 eV. These
four are listed below from low to high |UL|: V3Ir (|UL| = 0.49 V;
F = −0.22 eV), Tc3Hf (|UL| = 0.65 V; F = −0.28 eV), V3Ni (|
UL| = 0.67 V; F = −0.37 eV), and Tc3Ta (|UL| = 0.79 V; F =
−0.23 eV). The free energy diagrams along the full NRR path
for these four materials are shown in Figure 7, in comparison
to the reference Mo(110). The DFT-verified energetics of
negative Ef, low limiting potential (as small as 0.49 V), and low
F (as small as −0.37 eV) warrant immediate experimental
evaluations of the NRR performance of these materials.
Revisiting the d* criterion in Figure 5, we observe that it is

still valid even for L12 materials (A3B), where d* is defined as
(3dA + dB)/4. All four candidates requiring smaller limiting
potentials than Mo(110) exhibit d* between 4.0 and 4.5, as
follows: d* = 4.0 (V3Ir), 4.25 (Tc3Hf, V3Ni), and 4.5 (Tc3Ta).
This analysis of L12 materials is consistent with the results in
Figure 5d that materials with 4 ≤ d* ≤ 6 may potentially
overcome the scaling relation observed in Figure 1b; it further

supports d* as a useful orbital-occupation guideline for NRR
catalyst design.
We note that three following points are noticeable and

should be discussed. First, for the newly screened materials, the
rank (e.g., in terms of UL) between SGCNN and DFT
prediction is not the same as shown in Table S3, and this
difference is inevitable due to the ML prediction error (MAE
of 0.23 eV). However, we emphasize that the main value of our
ML model is to narrow down the search space (in this case,
870 → 10) and dramatically enhance the search efficiency.
Second, we note that PDSs for these four catalysts are all found
at *NH→ *NH2, which is consistent with the assumption that
energetics of *N2 → *N2H vs *NH → *NH2 mainly compete
for PDS and UL determination in the NRR. Lastly, we also
note in Figure S1 that, for the new catalysts, the distal pathway
offers lower UL values relative to alternating and enzymatic
ones, which does not violate our initial assumption that the
distal mechanism is dominant in flat slab models.
We would like to discuss about the expansion of our model

to ternary compounds, although only the L12 crystal space was
studied for new catalyst discovery in this work. We further
studied ternary compounds, in particular alloy-core@shell
structures, which have recently been studied for CO oxidation
reaction.53 This material is overall in core−shell architecture,
while the core part is ordered intermetallics; thus, it is expected
to be in a similar data distribution with our ML training space.
As a result of tests for three random alloy-core@shell
structures (ReOs@Rh, PdPt@Ru, and PdPt@Ir), we find

Figure 6. ML-driven predictions and DFT verification to identify
novel catalysts in the L12 crystal space. (a) Schematic describing bulk
and (111) surface structures of the L12 ordered phase (A3B). (b)
Fully ML-driven screening process to search for stable and efficient
catalysts that potentially outperform Mo(110) in the NRR. T
(tolerance) is 0.23, which is adopted from the MAE value of the
pretrained SGCNN model. (c) UL and F values predicted by the
SGCNN model for the 10 screened materials. DFT-computed UL and
F values of Mo(110) are shown as a reference to define the promising
zone and tolerance boundary. (d) 2D histogram comparing the
predicted adsorption energies using the SGCNN model and DFT
computations for the 10 screened materials.

Figure 7. DFT-computed free energy diagrams along the full NRR
path of four proposed catalysts, in comparison to those of Mo(110).
PDSs are highlighted with arrows. Materials are listed in the order of
low to high |UL| values (DFT predictions). Numbers in the
parentheses denote |UL| values predicted by the SGCNN model, for
comparisons.
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that SGCNN well predicts the binding energies of all five
adsorbates with the MAE of only 0.13 eV, indicating that our
model can be effectively expanded to ternary compounds. The
detailed results of SGCNN predictions for alloy-core@shell
structures are available in Figure S6.

■ CONCLUSIONS
Overall, we developed a machine learning model (SGCNN)
that learns surface interactions in NRR catalysis. With a self-
accumulated database of 3040 surface DFT calculations,
SGCNN predicted the binding energies, ranging over 8 eV,
of five adsorbates (H, N2, N2H, NH, and NH2) that are
directly related to NRR performance with an MAE of only 0.23
eV. SGCNN only requires the low-dimensional inputs of
elemental properties available in the periodic table of elements
and connectivity information of constituent atoms. As a result,
the model is suited for an accelerated screening process. Via a
combined process of SGCNN-driven predictions over the L12
crystal space and DFT verification, four novel catalysts in the
L12 crystal space, i.e., V3Ir(111), Tc3Hf(111), V3Ni(111), and
Tc3Ta(111), are proposed as stable candidates that outperform
the reference Mo(110) in terms of both the UL and F criteria;
immediate experimental evaluation of their NRR performance
is warranted. The SGCNN-based screening process, which
prioritizes the unexplored materials in terms of Ef, UL, and F,
can significantly narrow down the search space, which enables
accelerations of the novel catalyst discovery. A t-SNE analysis
further suggests that catalytic surfaces with d* values between
4 and 6 may potentially lower the limiting potential in the
NRR, providing an insightful guideline for orbital occupations
to improve catalytic performance.

■ METHODS
DFT Calculations for Adsorption Energy Data Accumula-

tion. Spin-polarized DFT calculations were performed using the
Vienna Ab initio Simulation Package (VASP) with projector-
augmented-wave pseudopotentials54,55 and the revised Perdew−
Burke−Ernzerhof (RPBE)56 exchange−correlation functional.
Grimme’s DFT−D3 method57 was adopted to treat van der Waals
interactions for the improved description of adsorption energy.43,58,59

Note that the Hubbard U term is not implemented in this work.
Although the inclusion of the Hubbard U term is important for metal
oxide catalyst systems where d states are strongly localized,60−62 the U
term little affects the adsorption energy by less than 0.05 eV in pure
metal systems (materials investigated in the current study), where
electronic states are delocalized. See Table S4 for the effect of
Hubbard U terms. A plane-wave kinetic energy cutoff of 520 eV was
used. For k-point sampling, an 8 × 8 × 8 Monkhorst−Pack mesh was
used for bulk systems, while a 6 × 6 × 1 Monkhorst−Pack mesh was
used for slab systems.63 The slab of a 2 × 2 unit cell consists of four
layers. The bottom two layers were fixed, and the top two layers and
adsorbates were fully relaxed until the forces acting on the individual
atoms were less than 0.05 eV/Å. A vacuum spacing of 15 Å (in the z-
direction) was used to prevent spurious interactions between slabs.
Various adsorbate positions on slabs were considered: (1) N2
adsorbates were placed vertically on the slab at top sites; (2) N2H,
NH, and NH2 adsorbates were placed horizontally on the slab at top,
hollow, and bridge sites; and (3) H adsorbates were placed on the
slab at top and hollow sites. The details of the adsorption geometries
are summarized in Figure S7. The adsorbate binding energies were
calculated by the following equation: ΔEads = E[slab + ads.] − E[slab]
− E[ads.], where E[slab + ads.], E[slab], and E[ads.] are the total
energies of the slab+adsorbate, slab-only, and adsorbate-only
configurations. During SGCNN training, E[ads.] of N2H, NH, and
NH2 molecules were not referenced to N2 or H2 gas states but
referenced to each radical itself so that binding energies of each

adsorbate span over different ranges. Training with the radical
referencing improves the MAE by approximately 0.1 eV, relative to
the other case using N2 and H2 gas states as the reference.

Free Energy Corrections. The free energies of adsorbates were
estimated under standard reaction conditions (pH = 0; T = 298 K; P
= 1 atm) at a potential of U = 0. The chemical potential of (H+ + e−)
was estimated to be equal to that of 0.5H2. The thermochemical free
energy is given by ΔGads = ΔEads + ΔGcorr, where ΔGcorr denotes free
energy correction.44 Importantly, note that ΔEads was referenced to
N2 and H2 gas for ΔGads estimations. The ΔGcorr values were
estimated using a standard vibrational correction in the harmonic
approximation to enthalpy and entropy as follows: ΔGcorr = ΔEZPE +
ΔHcorr − TΔScorr, where ΔEZPE, ΔHcorr, and TΔScorr are the zero-point
energy correction, enthalpy correction, and entropy correction terms,
respectively, and the values for each adsorbate are available in Table
S1. Solvation effects were ignored because the solvation-induced
stabilization energy of adsorbates in the NRR is less than 0.1 eV.43

Slab Graph Constructions. Graphs are mathematical represen-
tations of system structures, where nodes and edges correspond to
atoms and bonds, respectively. Multiple edges are allowed to
represent the periodicity of solids. SGCNN consists of two
independent graphs: a bulk graph (B) and a surface graph (S1 or
S2), as depicted in Figure 3a. The surface graph captures the catalyst−
adsorbate interactions by characterizing adsorbate types and
adsorption sites. Each ith atom (node) in a system is encoded into
an atom vector vi, which is based on the elemental properties that are
readily available from the periodic table of elements. Atomic features
are encoded in a one-hot manner due to their categorical property. A
list of atomic input features and their ranges/units/categories is
available in Table S5. Each bond (edge) between the ith and jth
atoms is defined only if d(i,j) < ri + rj + Δ, where d(i,j) is the distance
between the ith and jth atoms, and ri and rj denote the covalent radii
of each atom, with the tolerance Δ being 1.5 Å. Each bond is encoded
into a bond vector, i.e., u(i,j)k = 1, where k is the kth edge connecting
the center node i and neighbor j. Note that we intentionally set the
bond vector as distance-insensitive, unlike the original CGCNN
work.38 As a result, the connectivity information required as an ML
input is whether or not arbitrary atom pairs are connected (yes or no
question), instead of their distance values.

Convolution and Pooling Functions. CNN processes are
performed on top of each bulk and surface graph, which consists of a
sequence of convolutions, pooling, and FCLs. The convolution
functions first concatenate neighbor vectors z(i,j)k

(t,f) = vi
(t,f)⊕vj

(t,f)⊕u(i,j)k
and then perform convolutions to update each atom vector, as
follows:
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where t and f parameters denote the numbers of convolutional layer
and filter, respectively, ⊕ denotes concatenation, ⊙ denotes element-
wise multiplication, σ is a sigmoid function, g is the exponential linear
unit (ELU) activation function, and W1

(t,f), W2
(t,f) and b1

(t,f), b2
(t,f) are

convolution weight matrices and biases of the tth layer and f th filter,
respectively.38,64 The effect of the number of convolution layers and
filters on the prediction accuracy is shown in Figure S8. The pooling
function is selected as the normalized summation of all atom vectors
(after R convolutions), i.e., vpool = ∑i,fvi

(R,f). The final feature vector
resulting from the pooling process is extracted in the same dimension
as each atom vector. Two pooled vectors originating from each bulk
and surface graph are concatenated, and the result is finally related to
the adsorbate binding energy via the FCLs.

Hyperparameter Tuning, Loss Function, and Regulariza-
tion. The following hyperparameters are tested, and the optimized
values are shown in parentheses: the number of convolution filters
and layers (1 filter, 3 layers), learning rate (5 × 10−3), exponentially
decaying learning rate (0.97 for every 100 epochs), nodes of the FCLs
(3 layers with 10 → 2 → 1 nodes/layer), standard deviation of
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normally distributed random initial weights (0.1), batch size (64), and
total number of epochs (1000). The loss function J(y, ŷ(W)) is set as
the mean squared error (MSE). During the training phase, the loss
function J is minimized using the Adam optimization algorithm.65

Two regularization techniques are used to reduce overfitting:
dropout66 and L2 weight decay. For dropout, we randomly disconnect
some neurons during the training phase with a dropout probability
and restore the complete network with proper scaling in the test
phases. The optimized dropout probability and L2 regularization
coefficients are 0.2 and 10−2, respectively. A list of hyperparameters
and their ranges for the optimization process is available in Table S6.
SGCNN Training Time and Code Availability. The proposed

SGCNN is implemented in Python (version 3.5) using the
TensorFlow framework (version 1.7.0). The training time required
is approximately half an hour to obtain 5-fold cross-validation results
for each SGCNN network using GeForce GTX 1080 Ti GPU. The
SGCNN implementation code is available at https://github.com/
myungjoon/SGCNN.
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