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Identification of crystal symmetry from noisy diffraction
patterns by a shape analysis and deep learning
Leslie Ching Ow Tiong1,2, Jeongrae Kim 1,2, Sang Soo Han 1✉ and Donghun Kim 1✉

The robust and automated determination of crystal symmetry is of utmost importance in material characterization and analysis.
Recent studies have shown that deep learning (DL) methods can effectively reveal the correlations between X-ray or electron-beam
diffraction patterns and crystal symmetry. Despite their promise, most of these studies have been limited to identifying relatively
few classes into which a target material may be grouped. On the other hand, the DL-based identification of crystal symmetry suffers
from a drastic drop in accuracy for problems involving classification into tens or hundreds of symmetry classes (e.g., up to 230 space
groups), severely limiting its practical usage. Here, we demonstrate that a combined approach of shaping diffraction patterns and
implementing them in a multistream DenseNet (MSDN) substantially improves the accuracy of classification. Even with an
imbalanced dataset of 108,658 individual crystals sampled from 72 space groups, our model achieves 80.12 ± 0.09% space group
classification accuracy, outperforming conventional benchmark models by 17–27 percentage points (%p). The enhancement can be
largely attributed to the pattern shaping strategy, through which the subtle changes in patterns between symmetrically close
crystal systems (e.g., monoclinic vs. orthorhombic or trigonal vs. hexagonal) are well differentiated. We additionally find that the
MSDN architecture is advantageous for capturing patterns in a richer but less redundant manner relative to conventional
convolutional neural networks. The proposed protocols in regard to both input descriptor processing and DL architecture enable
accurate space group classification and thus improve the practical usage of the DL approach in crystal symmetry identification.
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INTRODUCTION
High-throughput material synthesis and characterization have
been popular topics of research during the past few decades and
have accelerated the discovery of novel materials1–5. Although
various characterization methods exist, identifying the crystal
symmetry, that is, the way the atoms are arranged in space, is
inarguably the first and most important process in material
characterization. This is because the crystallographic structure of a
material plays an important role in determining the material
properties (structure–property relationship)6,7. For a concrete
example, consider the magnetism of iron: body centred cubic Fe
is ferromagnetic, while face centred cubic Fe shows paramagnetic
behaviors8. The most effective way to classify crystal symmetries is
to find the group representing all transformations under which a
system is invariant, namely, its space group (SG). In three
dimensions, there are 230 distinct types of SGs when chiral
copies are considered9–11; these SGs are formed from the
combinations of the 32 point groups with the 14 Bravais lattices12.
Manually determining the SG to which a target material belongs is
a tedious and highly inefficient task due to the brute-force nature
of the search algorithms, which are based on matching diffraction
patterns (DPs) to those in a database, such as the Crystallography
Open Database or the Inorganic Crystal Structure Database6,13–17.
Thus, there is a strong and timely need for robust and automated
assessment tools for crystal symmetry determination.
Techniques based on X-ray and electron-beam diffraction are

the most related to the identification of crystal symmetries. The
latest generation of tools for diffraction experiments allows the
simultaneous collection of large volumes of data18,19, the handling
of which calls for big data techniques and machine-learning-based
approaches. Several recent works have introduced regression

models or deep learning (DL) models for material characterization.
Ryan et al.20 used deep neural networks to effectively distinguish
chemical elements based on the topology of their crystallographic
environment. Liu et al.21 refined atomic pair distribution functions
in a convolutional neural network (CNN) to classify SGs. For similar
purposes, Park et al.22, Vecsei et al.23, Wang et al.24, Oviedo et al.25,
and Aguiar et al.26 used powder X-ray diffraction (XRD) 1D curves,
for which information such as peak positions, intensities, and full-
widths at half-maximum are mainly treated as the key input
descriptors. In addition, Ziletti et al.27 (in a parent work of this
study), Aguiar et al.28, Kaufmann et al.29, and Ziatdinov et al.30

developed DL models by extracting features from electron-beam
based 2D DPs. These studies clearly show that DL methods can
effectively reveal correlations between diffraction data and crystal
symmetry. Despite their promise, however, most of these studies
have been limited to identifying relatively few classes or crystal
systems into which a material can be grouped. DL-based methods
of crystal structure determination work perfectly for problems
with a small number of symmetry classes (fewer than 10);
however, they suffer from a drastic drop in accuracy for more
difficult problems involving classification into tens or hundreds of
symmetry classes (e.g., up to 230 SGs), severely limiting their
practical usage. A DL model that is capable of identifying
hundreds of classes with a sufficiently high accuracy will be
needed to realize a robust, automated, and ultimately self-driving
microscopy system or laboratory31–33.
In this work, considering the limitations imposed by the spotty

and noisy distributions of raw DPs, we propose a solution, namely,
shaped DPs in a multistream DenseNet (MSDN). Our method
greatly enhances the accuracy of SG classification. Even for an
imbalanced dataset of 108,658 crystals sampled from 72 SGs, the
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model achieves 80.12 ± 0.09%, exceeding the performance of
benchmark methods by 17–27 percentage points (%p). We find
that the shaping strategy enhances the uniqueness of the raw
DPs; hence, even small observable differences between raw
images of symmetrically close crystal systems (e.g., monoclinic vs.
orthorhombic or trigonal vs. hexagonal) become pronounced. In
addition, the introduction of the MSDN allows the patterns to be
captured in a richer but less redundant manner than is possible in
a standard CNN. Owing to their substantial performance
enhancements, our proposed methodological protocols show
promise for improving the practical usage of DL approaches in
crystal symmetry determination.

RESULTS
Shaped DPs in a multistream DenseNet
Raw DPs are spotty and noisy and, thus, difficult to learn from. To
enhance the capabilities of DL, we propose two ideas: one is to
shape the DPs, and the other is to implement them in a
multistream DL network (Fig. 1). The former strategy is to refine
the raw DPs by selectively connecting nodes, which transforms
them into shaped DPs. One can expect three possible benefits
from shaped DPs: (1) the learning objective becomes more solid;
(2) by controlling the shaping criteria, it is possible to maximize
the uniqueness of each DP; and (3) the added lines may amplify
critical information such as lattice parameters (length, angles, etc.).
We hypothesize that these benefits will result in improved DL of
crystal symmetries.
Shaped DPs are produced as follows. First, raw DPs are collected

from three orthogonal zone axes (the x-, y-, and z-axis) in the
Condor software with an incident beam wavelength λ of 3.5 ×
10−12 m34. The raw DPs are represented as image-based input (or
a pixel-based matrix), as illustrated in Fig. 1b, and each pixel is
given different values between 0 and 255 in grayscale order from
black to white, which is a common method in computer vision
theory. The raw DPs (R*) are typically composed of several nodes
(the position of diffraction peaks) and thus can be represented as
R*= {N*,1, N*,2, …, N*,n}, where N* denotes each node, which is
simply a collection of multiple pixels; n is the number of nodes;
and * denotes each axis. Here, the pixel value threshold for the
node identification is 50, which means that only pixels with values
≥50 constitute each node. We find that the overall DL
performance depends on this threshold for the peak identification,
and the threshold of 50 was found to be the optimal value after
testing integers between 30 and 100 (Supplementary Fig. 1).
Once nodes are identified, the distances between node pairs

are then calculated, that is, dist*,i–j= d(N*,i, N*,j), where N*,i and N*,j

are two arbitrary nodes and d(⋅) is the Euclidean distance function.
We draw interpolated lines only for node pairs with a distance
smaller than a certain threshold, that is, 1.7 ×min(dist*,i–j), where
min(⋅) returns a minimum value after searching over all possible i–j
pairs. The overall performance as a function of this threshold
(prefactor ranging from 1.3 to 1.9) was also evaluated, and a
prefactor of 1.7 was found to be the optimal value (Supplementary
Fig. 2). This finding is likely attributed to the fact that the shapes
become too complex with a larger threshold value, whereas the
shapes are not clearly formed with a smaller threshold value. The
colors R, G, and B are used for lines in images of the x-, y-, and z-
axis. The red (R) lines are shown in our exemplary schematic (Fig.
1b). Thus, the shaped DP, or S*, is calculated as R*+ ∑lineplot(N*,i,
N*,j), where the sum ∑ is taken over the selected node pairs and
lineplot(⋅) is the interpolation function. As shown in the scheme of
the DP shaping process (Fig. 1c), the lineplot(⋅) function is
dependent on the node sizes; as a result, the line thickness will
differ for different node pairs. Additional information related to
the DP shaping protocols is provided in the “Methods” and in
Supplementary Fig. 3. As seen in the examples from several SGs

presented in Fig. 1c and Supplementary Fig. 4, the shaped DPs are
more solid and much less noisy than the raw versions. The
resulting shapes comprise composition information that describes
the particular regions of interest that are useful for representing
DPs in more unique manners. In a broader approach, although not
attempted in this study, the line drawing process may be
performed differently by using a response function rather than a
sharp cutoff. Herein, the response function means a functional
form of the conversion between node distances and the line
strength, which should be a good approach in diversifying the line
characteristics (thickness or opacity). Developing the entire
shaping protocols within the neural networks can be a better
encoding than using the manually crafted shape representations
(such as sharp cutoffs), and thus is left for possible future study.
For the further processing of multiple inputs (DPs collected

from the three-zone axes), we propose a multistream network,
namely, an MSDN, as shown in Fig. 1d. In the MSDN, three
substream DenseNets are applied in parallel to each shaped DP;
these DenseNets share all of their parameters (weights W and
biases b). The idea of sharing parameters imposes prior knowl-
edge that the inputs to each substream (SR, SG, and SB) are
processed concurrently by the network, which substantially
reduces the number of parameters in the MSDN; there is some
speedup of the optimization process. In addition, this method
warrants different layers in each stream be functionally equivalent
after training, which is known to be beneficial to preventing
extrapolation biases; that is, the network can adapt better to out-
of-domain examples than networks without shared para-
meters35,36. In addition, the MSDN utilizes the design concept of
DenseNet37, in which all layers are densely connected (Fig. 1d); in
contrast, in a standard CNN, the features in each convolutional
(conv) layer are used as input to the next layer without
communication. DenseNet uses a different connectivity pattern
by introducing direct connections from any layer to all subsequent
layers, which improves the information flow between layers37.
Each layer has access to all the preceding feature maps in its block
and thus to the network’s collective knowledge. We refer to this
network architecture as Dense because all the layers are
connected to one another (dense connectivity). The superior
performance of DenseNets over standard CNNs has been
previously reported in the field of image learning and classifica-
tion37–39. Likewise, in the present study on the processing of DP
images, the proposed MSDN is expected to create rich patterns
while maintaining the low complexity of information, thus
enabling better classification performance.
The MSDN concurrently accepts and processes shaped DPs, that

is, SR, SG, and SB, to extract a better feature representation from
each substream for SG classification. Specifically, each layer in
each DenseNet receives the inputs from all preceding layers and
passes its features to all subsequent layers, meaning that the final
output layer has direct supervision over every single layer. As a
result, the network offers stronger feature propagation for the
extraction of collective knowledge in the inference process.
Regarding the network configuration, the MSDN used in this
study consists of four dense-block (DB) layers and three transition
layers in each substream network, as shown in Fig. 1d and
Supplementary Table 1.

Dataset
A large-scale collection of DPs for 108,658 materials sampled from
72 SGs was acquired. These 72 SGs (out of a total of 230) were
selected based on the criterion that each group should be
represented by at least 295 materials in the Materials Project (MP)
library40, as shown in Fig. 2a. There are too few materials (mostly
<100) available for the remaining SGs in the MP library, which
were therefore excluded for DL training and testing. The selected
SGs include 2 triclinic, 12 monoclinic, 22 orthorhombic, 13
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tetragonal, 6 trigonal, 8 hexagonal, and 9 cubic crystal systems.
Because we downloaded the full list of materials for each SG, the
dataset is highly imbalanced, ranging from 295 materials for SG
#223 to 8700 materials for SG #14. For the following DL
experiments on SG classification, we constructed datasets
consisting of 8, 20, 49, and 72 SGs, as shown in Fig. 2b. The
number of materials in each SG is tabulated in Supplementary
Table 2.

Classification experiments with varying numbers of SGs
We conducted DL experiments to study the classification of SGs
(Fig. 3). To evaluate the impact of our strategy (shaped DPs in an
MSDN), we performed comparisons with other benchmark
models, that is, spot DPs in AlexNet41, DenseNet37, ResNet42,
and VGGNet43. Spot DPs, which were originally proposed in the
work of Ziletti et al.27, are the superimposed version of the raw
DPs from R/G/B color channels. See the scheme in Supplementary
Fig. 5 for an exemplary illustration of spot DPs. The key parameter
in our experiments was the number of SGs into which materials

could be classified; we considered 8, 20, 49, and 72 (Fig. 2b). In
each case, the dataset was divided into the data for learning
(training/validation) and the data for testing an 80/20 ratio, with
no overlap.
Before explaining the ML test results, we provide evidence that

our models are not overfitted. Figure 3a shows the evolutions of
the accuracy and total loss during the model’s learning process
(increasing epochs). The performance of accuracy and total loss
show the convergent curves in both the training and cross-
validation phases, which indicates that the model is not overfitted.
In addition, we performed principal component analysis (PCA) on
several SG classes for data visualization (Supplementary Fig. 6).
PCA visualization shows that our training-test splitting is random
and nonbiased, and that the training and test datasets are not
nearest neighbors in the latent space. It is observed that a number
of correct prediction datapoints are located far away from training
clusters in the latent space. This indicates that the high test
accuracy is not a result of the simple memorization of common
structures in our training datasets and consequently proves that
the model is not overfitted.

Fig. 1 Shaped diffraction patterns in an MSDN. a A scheme that describes the automated determination of crystal symmetry based on
diffraction experiments. b A scheme describing the visualization of a shaped DP in image-pixel values. c A scheme describing the generation
process for shaped DPs as well as two exemplary results from space groups #187 and #205. Note that in the generation scheme, the line
thickness depends on the node size, which makes the shapes more unique. d The network architecture of the MSDN.
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In Fig. 3b and Supplementary Table 3, to begin with the
smallest-scale dataset (with eight SGs), both our approach and the
other benchmark models work excellently: ours shows 99.04 ±
0.06% accuracy, while the others also achieve accuracies of above
94.5%. Notably, we have well reproduced the results of the state-
of-the-art work of Ziletti et al.27 (over 98.63 ± 0.09% for 8 SGs),
which indicates that our experiments are reliable.
Proceeding to more difficult problems, that is, larger-scale

datasets (20, 49, and 72 SGs), we observe that our strategy of
shaped DPs in an MSDN performs substantially better than the
benchmark models. Note that we performed transfer learning by
utilizing the pretrained weights from the 8 SG classification task to
retrain the 20 SG, 49 SG, and 72 SG datasets. In Fig. 3b and
Supplementary Table 3, our method achieves excellent top-1
classification accuracies of 99.04 ± 0.06%, 95.01 ± 0.10%, 83.16 ±
0.10%, and 80.12 ± 0.09% on the 8 SG, 20 SG, 49 SG, and 72 SG
datasets, respectively. On the other hand, the other models based
on spot DPs considerably underperform: even the leading model
among the benchmarks (spot DPs in Ziletti et al.’s network)
exhibits an accuracy of below 63% for the 72 SG dataset. This
result proves the relatively high tolerance of our model to an
increasing number of SGs for classification, which is a critical
requirement for its practical usage. We additionally measured the
performance achieved with shaped DPs in a multistream VGGNet
(MSVGG) in order to distinguish the contributions from the
“shaped DP” and “MSDN” aspects of the proposed strategy. For
the case of the 72 SG dataset, the total enhancement of 17%p can
be divided into a 10%p contribution from the shaped DPs and the
remaining 7%p of the contribution from the MSDN, confirming
that both strategies play critical roles.
Unlike in Fig. 3b, in which only the top-1 classification

performance is considered, the top-k (k= 1− 5) ranking accuracy
is presented in Figs. 3c–f (for the 8, 20, 49, and 72 SG datasets,
respectively). We observe that for all cases, our strategy of shaped
DPs in an MSDN performs the best regardless of the k value,
followed by shaped DPs in an MSVGG. This once again confirms
the superiority of shaped DPs over the conventional spot DPs as
the descriptors used for crystal symmetry determination. For the
smaller datasets (8 and 20 SGs), the classification is almost perfect
(accuracy >99%) even at the top-2 ranking. For the larger datasets
(49 and 72 SGs), the accuracy remains above 95% at the top-4
ranking (49 SG dataset) or the top-5 ranking (72 SG dataset).
As an important note, our classification task is different from the

standard image classification task due to the hierarchical nature of
crystal symmetries. Crystallography is inherently hierarchical and
continuous for any real material system44,45. Under enough noise,
for example, a slight tetragonal distortion to a cubic structure will
be indistinguishable from a standard cubic structure. This situation
then requires the probabilistic classifications with the uncertainty
quantifications. To overcome the hierarchical nature of crystal

symmetry, we conducted probabilistic classifications for all the
tasks in this study using the Monte Carlo (MC) dropout
method46,47. This approach allows us to estimate the mean
probability and standard deviations over the test datasets. Figure
4 shows several examples of probabilistic classifications. The
probabilities are computed via 500 passes of each image with MC
dropout active. For many of the misclassified cases (see the red
dotted boxes in Fig. 4), the second most likely solution turned out
to be the actual SG. We also observe that the confidence in the
incorrect predictions is much lower (<50%) than that of the
correct prediction cases (generally >80%), and the misclassifica-
tion seems reasonable based on these probability values.

Data augmentation and transfer learning for highly
underrepresented datasets
Our main results are limited in that the tasks did not attempt
classifications into all 230 SGs due to the statistically insufficient
number of materials (<250) for many classes in the current MP
database. To overcome the problem of small data size, we
performed data augmentation on some highly underrepresented
classes. The new 44 SG datasets are selected based on the
criterion that each group is represented by only 100–250 materials
in the MP library (Supplementary Table 4). The data augmentation
process for these 44 SGs is performed as follows. We replace the
constituent elements in available materials with other random
elements in a combinatorial manner so that new hypothetical
(physically implausible) materials are generated. Figure 5a shows
the population distributions of the original vs. generated datasets
for the new 44 SGs.
After the data augmentation step was completed, we

performed two types of transfer learning using the pretrained
weights on the 72 SG dataset: (1) retrain with the original data
(without data augmentation), vs. (2) retrain with the original and
the generated data (with data augmentation). For both cases, the
dataset was divided into the data for learning (training/validation)
and the data for testing at an 80/20 ratio, with no overlap. Note
that the testing dataset includes only the set of patterns
computed from the MP database and are thus physically plausible.
Figure 5b, c show the data usage for transfer learning and the
resulting DL performances. We achieve 87.5% and 68.5% top-1
accuracies for the model trained with and without data
augmentation, respectively, on the new 44 SG datasets. We also
conducted testing on a larger-scale dataset that contains all 116
SGs (72+ 44), rather than the new 44 SG datasets themselves. In
this test, we achieve 79.1% and 74.9% top-1 accuracies with and
without data augmentation, respectively. The data augmentation
method is indeed helpful in expanding our study to include a
highly underrepresented dataset (in this case, the classes that are
represented by much fewer than 250 materials) and substantially
improved the classification accuracies by up to 19%p. The success

Fig. 2 Population distribution of the diffraction pattern dataset. a The number of materials in each space group, along with the crystal
system information. The background colors represent seven types of crystal systems: triclinic in red, monoclinic in orange, orthorhombic in
yellow, tetragonal in green, trigonal in blue, hexagonal in light gray, and cubic in dark gray. b The usage of our dataset for the experiments.
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of transfer learning indicates that the learned features from the
pretrained model are generic and powerful, rather than overfitted.

Classification results for individual SGs
We investigated the classification results for individual SGs. Only
the 49 SG and 72 SG cases were analyzed (Fig. 6a, b). An
interesting observation for both benchmarks and our model is
that the accuracy is generally higher for SGs in high-symmetry

crystal systems. The classification process tends to work much
better for cubic/hexagonal/trigonal systems than for monoclinic/
orthorhombic ones. Triclinic systems are an exception, largely due
to the insufficient number of materials belonging to these
systems. In Fig. 6c, d, while the benchmarks show the highest
accuracy for cubic systems, the accuracy of our model is the
highest for trigonal and hexagonal systems rather than cubic
systems. In particular, for the 49 SG dataset, it is observed that for

Fig. 3 Space group classification performance. a The learning process of MSDN using 72 SG dataset. The classification accuracy and total
loss is shown both in training and cross-validation phases. b Top-1 accuracy as a function of the number of space groups for classification with
standard deviation. c–f Top-k accuracies for the datasets consisting of 8 SGs (c), 20 SGs (d), 49 SGs (e), and 72 SGs (f). The top-k accuracy refers
to the percentage of cases in which the correct class label appears among the top-k probabilities. The circled insets magnify the results of the
“shaped DPs+MSDN” model for a clearer vision of error bars.
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all SGs corresponding to trigonal and hexagonal systems (#146–
#194), the classification accuracy is excellent, being over 90%.
The accuracy improvements in our model over the benchmarks

appear to be universal for most SGs. To identify the source of
these improvements, we now decompose the contributions for
each crystal system (Fig. 6c, d). The model named spot DPs+
Ziletti et al. is selected as the representative benchmark here due
to its relatively high performance. Triclinic systems are excluded
from the analysis due to the statistically insufficient number of
materials. The enhancements in accuracy are ranked as follows:
trigonal (24.1%p) >monoclinic (19.7%p) > hexagonal (18.1%p) ≈
tetragonal (18.11%p) > orthorhombic (13.7%p) > cubic (4.8%p),

where the values in parentheses are the average values for the
49 and 72 SG datasets. The contribution for cubic systems is much
smaller than those for the other crystal systems.
Next, we focus on further characterizing the incorrect classifica-

tions obtained from the benchmark (spot DPs+ Ziletti et al.) and
our model (shaped DPs+MSDN). In Fig. 6e, f, for instance, the
[monoclinic, orthorhombic] coordinate in the matrices represents
the materials belonging to an SG corresponding to a monoclinic
system that were incorrectly classified as belonging to an
orthorhombic system. In the comparisons between the bench-
mark and our model, the most prominent changes are observed in
two areas, that is, the monoclinic/orthorhombic and trigonal/

Fig. 4 Probabilistic classification examples. Six examples are randomly selected from the 72 SG test dataset. Each example is shown with the
bar graph where the top-5 classification probabilities are shown with the standard deviations. The probabilities are computed via 500 passes
of each image with MC dropout active. The probability of the most likely solution is shown in the parentheses in each example. Misclassified
images are highlighted by the red dotted box.

Fig. 5 Transfer learning performances for the new 44 SG dataset. a The population distribution of the diffraction pattern dataset for the
new 44 SGs. b The usage of our dataset for the transfer learning experiments. c Transfer learning results with and without the data
augmentations.
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Fig. 6 Decomposition analysis to identify the origins of performance improvement. a, b Classification results for individual space groups
from the 49 SG (a) and 72 SG (b) datasets. The background colors represent the seven types of crystal systems, as in Fig. 2a. c, d Average
classification accuracy by crystal system type for the 49 SG (c) and 72 SG (d) datasets. e, f Matrices showing the distribution rates (%) of
incorrect predictions for the 49 SG (e) and 72 SG (f) datasets. If the rate is, for example, 20% for the [monoclinic, orthorhombic] coordinate in a
matrix, this means that 20% of the materials belonging to monoclinic systems in our dataset are incorrectly classified as belonging to SGs
corresponding to orthorhombic systems. Red dotted boxes highlight the regions that are considerably different between the benchmark and
our model.
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hexagonal pairs. This indicates that the benchmark model often
finds it difficult to correctly classify SGs corresponding to
monoclinic vs. orthorhombic systems or to trigonal vs. hexagonal
systems, whereas our model performs much better in resolving
this confusion. We speculate that such confusion may occur
mainly between symmetrically close crystal systems. For instance,
monoclinic and orthorhombic systems are very close in terms of
lattice symmetry, differing only in the lattice angle requirements
(90° angle requirements). Therefore, similar spot distributions in
spot DPs can possibly arise even from materials from different
crystal systems, which may undermine the performance of spot-
DP-based benchmark models.
To further justify our observation that our model (shaped DPs+

MSDN) can largely resolve the confusion between symmetrically
close systems, we scrutinize the DPs of several test samples. Figure
7 shows exemplary cases in which spot DPs fail and shaped DPs
succeed in yielding correct SG classifications. For the first two
example pairs of mp-1076884 (SG #1, triclinic) vs. mp-6406 (SG #7,
monoclinic) and mp-6019 (SG #14, monoclinic) vs. mp-556003 (SG
#74, orthorhombic), the raw and spot DPs are both too similar
(almost identical) to be easily differentiated. This is consistent with
the powder XRD data available in the MP library in which the peak
locations and intensities are alike. However, the shaped DPs look
substantially different, enabling the correct SG classification of
these samples. In appearance comparisons of the shaped DPs, we
find that the shaped DPs appear more symmetric for the higher-
symmetry crystal system, as seen in the R-channel image for the
first example pair (triclinic vs. monoclinic) and the G- and B-
channel images for the second example pair (monoclinic vs.
orthorhombic). The result indicates that the shape analysis can
distinguish even small differences (barely observable by human
eyes) in node position, size, and brightness, which are likely to be
induced by the different level of lattice symmetries of crystal
systems.
For the latter two example pairs of mp-757070 (SG #166,

trigonal) vs. mp-1195186 (SG #176, hexagonal) and mp-5055 (SG
#186, hexagonal) vs. mp-29211 (SG #160, trigonal), although the
raw and spot DPs do look slightly different, the benchmark models
unfortunately do not predict the correct SGs for these samples. In
the shaped DPs, however, these subtle differences are maximized.

Notably, the distance information of adjacent node pairs, which is
often related to the lattice parameters, is greatly amplified in the
shaped DPs, as observed in the R and B channels of the fourth
example pair. From these case studies, we find that the shaping
strategy enhances the uniqueness of the raw DPs more than the
superimposition strategy used to produce the spot DPs does;
hence, even small observable differences in pattern between
symmetrically close crystal systems (e.g., monoclinic vs. orthor-
hombic or trigonal vs. hexagonal) become pronounced.
In addition to the shaping strategy, the MSDN architecture also

contributes to performance improvements; here, we would like to
discuss the benefits of this network. Figure 8 visualizes both the
conv layers from the MSVGG and the DB layers from the MSDN for
selected diffraction images. Several additional examples are
presented in Supplementary Figs. 7 and 8. The visualization
results show that the patterns captured in the MSDN are clearer,
richer, and less redundant than those in the MSVGG. Indeed,
several feature patterns in the MSVGG are redundant, such as
those for samples A, C, and D (highlighted in the red dotted
boxes), while such redundant feature patterns are not found in the
MSDN. This is likely because the MSDN reuses the features from
previous layers to prevent redundancy within the network
(Supplementary Fig. 9).
We also compared the computational and memory efficiency of

the MSVGG and MSDN. The MSDN is superior to the MSVGG in
terms of both space complexity (total number of parameters) and
time complexity (FLOPS: floating-point operations per second).
The numbers of parameters and FLOPS are 128.85 M and
515.37 M, respectively, for the MSVGG, while they are much
smaller at 1.54 M (84 times smaller) and 5.75 M (90 times smaller),
respectively, for the MSDN. In fact, the number of parameters of
the MSVGG is enormous because every single layer has its own
weights and biases (W and b) to be learned. In the MSDN, this
complexity is avoided by optimizing the parameters and
simplifying the connectivity between layers because it is
unnecessary to learn redundant feature maps. Such a large
difference is possible because the MSDN can receive direct
supervision for the propagation of the error signal from the
preceding layers to the final layer. These comparisons indicate

Fig. 7 Case studies in which spot DPs fail and shaped DPs succeed in yielding correct SG classifications. The top row provides the material
information of the test samples, which are available in the MP library, including the MP i.d., SG #, and powder X-ray diffraction data. The
chemical formula of each material is as follows: mp-1076884 (Sr6Ca2Fe7CoO20), mp-6406 (Na2MgSiO4), mp-6019 (Sr2YNbO6), mp-556003
(CaTiO3), mp-757070 (BaCaI4), mp-1195186 (RbLa2C6N6ClO6), mp-5055 (Na6MnS4), and mp-29211 (V4Cu3S8). The next four rows show the spot
DPs and shaped DPs of each material. The green and red boxes indicate success and failure cases, respectively, for SG classification, and the
blue boxes refer to the reference data in the training set. Best viewed in an electronic version.
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that DP image processing is extremely fast and efficient in our
MSDN model.

DISCUSSION
The main results above are limited in that any noise effects (such
as defects) that could occur in real-world experiments were not
considered. Defects exist everywhere in the form of grain
boundaries, dislocations, vacancies, and local inclusions, and
may have a large impact on macroscopic properties of materials.
We performed additional DL experiments for defective structures
to understand whether or not our model is robust to the
perturbations such as intrinsic defects (e.g., vacancies). Figure 9
shows the classification accuracy as a function of vacancy
concentration. This experiment was performed using only 8800
test samples that were classified correctly in the experiment using
72 SG datasets in Fig. 3f (non-defect case). Vacancies were
produced by randomly removing 5%, 10%, and 20% of the atoms
in the total system. We observe that our model (shaped DPs+
MSDN) maintains a ~96% accuracy compared to the non-defect
case even with vacancy concentrations up to 20%, while others
exhibit lower accuracies of ~80–84%, which indicates the relatively
stronger robustness of our model to defect generations.
This study is entirely focused on simulated data, and thus does

not consider other possible defects that likely occur in real-world
experimental detector images, including shot-noise, background
scattering, parasitic scattering, and other relevant missing data

(intermodule gaps, beamstop, other masked items). Our shaping
scheme is simple to apply for simulated data (or high-quality
experimental data with strong peaks); however, it might be
challenging to apply in the case of real data where noises
constitute undesired peaks. We have plans to apply the proposed
protocols to experimental data where various methods of image
denoising and filtering could be attempted. If the presented
strategy also works for real experimental data, the impact of this
work will be greatly enhanced.
Finally, we would like to discuss the origins of the limited

classification performances. The presented performance is high for
<20 SGs; however, it drops to 80.1% for 72 SGs. Throughout the
study, we find that it was extremely difficult to reach an accuracy
>90% if we have 72 classes or more. We speculate that the main
challenge is related to the DPs themselves. Via the analysis of a
bulk volume of DPs, many examples were found where similar
patterns (almost identical patterns) appear from different SGs, and
even from different crystal systems. Four exemplary pairs are
shown in Fig. 7. These pairs are mostly found between crystal
systems of the nearest symmetry, such as triclinic vs. monoclinic,
monoclinic vs. orthorhombic, trigonal vs. hexagonal, and tetra-
gonal vs. cubic. The reason is because, for instance, tetragonal vs.
cubic systems differ only in the lattice parameter requirement a=
b ≠ c vs. a= b= c, respectively. Even though such small differ-
ences in lattice parameters change the appearance of DPs only
slightly, they should be classified into different crystal systems. We
believe that the observed similarities between patterns may limit
the accuracies in the classification problems involving tens or
hundreds of groups. The other challenge is related to the number
of materials in each SG (limited experimental data size). Via the
transfer learning studies for the highly underrepresented datasets
shown in Fig. 5, we concluded that a sufficient number of
materials warrants improved classification accuracies. For the new
44 SGs that are represented by a small number of materials (in the
range 100–250), we achieve an accuracy of only 68.5% without
data augmentation, but a much improved accuracy of 87.5% with
data augmentation. Thus, we believe that there is still room for
improving the quality of training by using the larger input dataset.
In summary, we propose methodological protocols for

enhanced DL-based determination of crystal symmetry, namely,
shaped DPs in an MSDN. Our methods greatly improve the SG
classification accuracy. Even for an imbalanced dataset of 108,658
crystals sampled from 72 SGs, our approach achieves an accuracy
of 80.12 ± 0.09%, outperforming benchmark models based on
conventional spot DPs by 17–27%p. Both the shaped DP strategy
(~10%p) and the MSDN architecture (~7%p) make considerable
contributions to performance improvement. The shaping strategy
enhances the uniqueness of the raw DPs; hence, even small
observable differences between the raw images of symmetrically

Fig. 8 Benefits of the MSDN over the MSVGG in processing DP images. For selected exemplary diffraction images A, B, C, and D, the block
layers of the MSVGG (1, 2, 3, and 4) and MSDN (5, 6, 7, and 8) are visualized. The third conv block of the MSVGG and the DB2 layer of the MSDN
are shown for comparison. The red dotted box indicates redundant (almost identical) feature maps. Best viewed in an electronic version.

Fig. 9 Robustness of our model to defects. Classification accuracy
as a function of vacancy concentrations. The experiment was
performed using only test samples that were classified correctly in
non-defect cases, which agrees with 100% accuracy for the 0%
defect concentration case for all models.
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close crystal systems (e.g., monoclinic vs. orthorhombic or trigonal
vs. hexagonal) become pronounced in the shaped versions. We
additionally find that the MSDN architecture captures the patterns
in a richer but less redundant manner than is possible in a
standard CNN. This work provides protocols in regard to both
input descriptor processing and the DL architecture and, as a
result, enables the robust and automated classification of SGs,
which we hope will facilitate the practical usage of the DL
approach in crystal symmetry determination.

METHODS
Generating and shaping DPs
First, using the MP library40, the coordinates of a standard conventional cell
are prepared48. Next, these are converted into the Protein Data Bank
format to satisfy the input-feeding requirement of Condor settings. In the
Condor software, a wavelength of λ= 3.5 × 10−12 m is used for the incident
beam. Three different zone axes (x-, y-, and z-axis) are considered. To
produce the shaped DPs, we initialize the first node in R*, which is assigned
to NR,i, NG,i, and NB,i of the dotted ith circle (Supplementary Fig. 3). Then, we
detect the neighboring jth node (NR,j, NG,j, and NB,j) and calculate the
distance between the ith and jth nodes. For each node pair with a distance
smaller than a specified threshold (1.7 ×min(distN*)), the algorithm will plot
a line between the nodes; otherwise, the algorithm will skip this step. For
the line colors, red (R), green (G), and blue (B) are used for each x-, y-, and z-
axis DP, respectively. After plotting is performed, the shaped DP outcome
is created as shown in step K, Supplementary Fig. 3.

DL experiment
For the DL experiments related to Fig. 3b–f, the dataset was divided into
80% of the data for learning (training and validation) and 20% for testing,
with no overlap. We then divided the images in the learning set by SG for
cross-validation purposes. The cross-validation procedure was designed as
follows: (1) randomly shuffle the learning set; (2) split it into ten groups; (3)
take one group as the validation set and the remaining groups as the
training set; (4) repeat step 3 every 100 epochs and summarize the model
evaluation scores. For the testing scheme, the test set images were used to
evaluate the performance of our network.
For the proposed model (shaped DPs+MSDN), we used Adam

optimizer49 with a learning rate of 1.0 × 10−5 and a weight decay and
momentum of 1.0 × 10−7 and 0.9, respectively. The MSDN consists of four
DB layers and three transition layers in each substream (Fig. 1c). The
structure of a dense block is illustrated in Supplementary Fig. 9. Let DB be a
dense block with l layers Hl, composed of conv, rectified linear unit and
dropout50 layers:

DB ¼ Hl x0; x1; ¼ ; xl�1½ �ð Þ; (1)

where x0~xl−1 represent feature outputs and […] is defined as a
concatenation operator. Then, a transition layer is implemented in every
block that performs 1 × 1 conv and average pooling operations, where 1 ×
1 conv means that the filter size of the conv layer is 1 × 1. Supplementary
Table 1 shows the configuration of the proposed network in detail. During
training, we defined a total loss (ℓtotal) function consisting of a sum of the
softmax cross-entropies ℓ of logit vectors and their respective encoded
labels, as follows:

‘total ¼ ‘ FRð Þ þ ‘ FGð Þ þ ‘ FBð Þ; (2)

‘ F�ð Þ ¼ �
XT

t

XC

c

Ltc log δSG F�ð Þtc
� �

; (3)

δSGðF�Þtc ¼
expðF�Þtc

PC
c exp

ðF�Þtc
; (4)

where * denotes the zone axis information (one of the color R, G, and B), F
is a flatten layer, L denotes the class labels, T is the number of training
samples, C is the number of classes, and δSG(⋅) is the output layer,
implemented with the softmax function. The ℓtotal function provides joint
supervision for the training process of the MSDN; it can robustly aggregate
the descriptors from the different substreams.
For the alternative model (shaped DPs+MSVGG), we used Adam

optimizer with a learning rate of 1.0 × 10−5 and a weight decay and
momentum of 1.0 × 10−7 and 0.9, respectively. This network consists of

24 shared conv layers, 15 maxpool layers, and 3 fc layers; more details of
the layer configuration are provided in Supplementary Table 5. We again
implemented the ℓtotal function in Eq. (2) to robustly aggregate the
descriptors from the different substreams. For all other benchmark
networks, we also used Adam optimizer with a learning rate of 1.0 ×
10−4 and a weight decay and momentum of 1.0 × 10−6 and 0.9,
respectively.

DATA AVAILABILITY
The data samples of the shaped DP descriptors are shared on the following Zenodo
link: https://doi.org/10.5281/zenodo.4030041.

CODE AVAILABILITY
The codes for generating shaped DPs and the pretrained model of MSDN are
available in the GitHub repository (https://github.com/tiongleslie/crystal-structure-
classification). All codes are written in Python 3.7 and the architecture of MSDN is
implemented using TensorFlow r1.13.
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