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A B S T R A C T   

Despite their potential promise, multicomponent materials have not been actively considered as catalyst mate-
rials to date, mainly due to the massive compositional space. Here, targeting ternary electrocatalysts for fuel 
cells, we present a machine learning (ML)-driven catalyst screening protocol with the criteria of structural sta-
bility, catalytic performance, and cost-effectiveness. This process filters out only 10 and 37 candidates out of over 
three thousand test materials in the alloy core@shell (X3Y@Z) for each cathode and anode of fuel cells. These 
candidates are potentially synthesizable, lower-cost and higher-performance than conventional Pt. A thin film of 
Cu3Au@Pt, one of the final candidates for oxygen reduction reactions, was experimentally fabricated, which 
indeed outperformed a Pt film as confirmed by the approximately 2-fold increase in kinetic current density with 
the 2.7-fold reduction in the Pt usage. This demonstration supports that our ML-driven design strategy would be 
useful for exploring general multicomponent systems and catalysis problems.   

1. Introduction 

Platinum (Pt), a highly scarce and expensive element, is used as an 
indispensable ingredient in fuel cells. For the last decade, extensive ef-
forts have been made to develop less expensive catalysts that maintain 
catalytic activities comparable to that of Pt [1–4]; however, the out-
comes are still either pure Pt or merely a Pt-based modification [5–9]. 

For the cathode where the oxygen reduction reaction (ORR) should 
occur, Pt3Ni (with Pt skin) is the state of the art; on the other hand, for 
the anode where the hydrogen oxidation reaction (HOR) should occur, 
unary Pt is used owing to its high activity despite the severe CO 
poisoning issue not being resolved [10]. It is highly desirable to find 
novel and lower-cost materials for both the cathode and anode without 
sacrificing the catalytic performance. 
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Metal alloying has been an excellent catalyst design strategy [11] 
since the alloying process can substantially modify the electronic 
structure and consequently the catalytic properties of metals. Alloying 
attempts in fuel cells thus far, however, have been limited to Pt-based 
bimetallic cases. In working environments, transition metals often 
dissolve while platinum does not, resulting in the formation of a 
Pt-based binary alloy with a Pt skin (PtaXb@Pt, where X=arbitrary metal 
element) in the cathode of fuel cells. This PtaXb@Pt structure has been 
extensively explored, and X ranges from (post-)transition metals (X=Ni, 
Co, Fe, Ti and Pb) [12,13] to other transition metals that are chemically 
similar to lanthanides (X=Y and Sc) [14]. These alloy nanostructures 
have exhibited improved performance because the Pt shell ensures sta-
bility in harsh environments and the alloy core offers tunability of the 
catalytic properties via ligand and geometric effects. In particular, Pt-Ni- 
[15], Pt-Co- [16,17], and Pt-Pb-based nanostructures in the cathode 
boost the mass activities (RDE test) into the range of 3.0–4.3 A/mgPt, 
which is considerably larger than the value of 0.1 A/mgPt for pure Pt 
[16]. The enhancements in the activity were also supported by density 
functional theory (DFT) studies in which the overpotential values were 
computed to be as low as 0.4 V for Pt3Ni or Pt3Co, compared to 0.67 V 
for pure Pt. 

Despite these achievements, Pt-based binary alloys have not been 
able to fully solve the chronic problems in fuel cells, which include high 
cost (dominance of the expensive Pt), slow kinetics (insufficient ORR 
activities at the cathode), and CO poisoning (a durability issue at the 
anode). These remaining problems call for the exploration of even 
broader compositional space, namely, ternary alloys [18–22]. In fact, 
the study of ternary space toward efficient ORR catalysis, including the 
examples of the Pt-Pd-Au [23] and Pt-Ni-Co [24,25] combinations, has 
only recently begun. This approach is a promising direction but is 
considered extremely difficult to explore due to the massive candidate 
space. For example, exploring ternary metal alloy materials involves 
numerous candidates. With only 30 metal elements, at least 30C3 = 4060 
elemental combinations exist, and adding the variation in crystal sym-
metry and elemental compositions results in an infinite number of ma-
terial candidates. Such a massive space cannot be explored by 
trial-and-error experiments or expensive quantum mechanical calcula-
tions, such as DFT calculations. 

These difficulties require more efficient routes, namely, machine 
learning (ML)-driven approaches [26–29]. A number of ML models 
aimed at predicting adsorption energies on catalytic surfaces were 
recently reported [30–42]. ML models including DOSnet, which requires 
density-of-states (DOS) as its input for adsorption energy predictions, 
have been developed [34,36]. Graph neural networks (GNNs), in which 
atoms and bonds of materials are treated as nodes and edges of graphs, 
outperform other models in terms of both accuracy and ease of input 
preparation (without DFT-level inputs) [37–40]. These GNN models 
were trained for diverse adsorbate types but have been used in a limited 
manner for exploring binary materials in both N2 reduction [37] and 
CO2 reduction catalysis [38,39]. Very recently, ML methods based on 
neural network potential or active learning have begun to be used to 
optimize the compositions for a specific ternary elemental combination 
[43,44]. These previous studies have highlighted the value of using ML 
to guide experimental material discovery [45–47]; however, exploring 
multicomponent systems involving at least three elements remains 
challenging due to both the lack of databases and ML extrapolation 
problems. 

In this work, we present a catalyst design protocol in which ML filters 
out potentially efficient and low-cost electrocatalysts in the massive 
ternary alloy space for fuel cells. Among the many structural possibilities 
in the ternary space, conventional alloy core@noble metal shells 
(X3Y@Z), in which all three constituent elements (X, Y and Z) can differ, 
are the focus of this study [48]. Based on a graph neural network trained 
with approximately ten thousand adsorption energy values obtained at 
the DFT level, we design a fully ML-driven screening process with 
criteria including structural stability (both thermodynamic and 

mechanical), catalytic performance, and cost effectiveness. As a result, 
we identify 10 and 37 promising candidates for each ORR and HOR 
electrode, with both lower cost and higher performance than pure Pt. 
Through experimental verifications, we find that a Cu3Au@Pt film, one 
of 10 final candidates for the ORR, substantially outperforms a Pt film in 
terms of half-wave potential, kinetic current density, and usage amount 
of expensive Pt. We demonstrate that our ML-based sorting protocol 
enables the identification of an efficient catalyst in a massive search 
space and could universally be expanded to other catalysis problems. 

2. Experimental section 

2.1. DFT database generation 

Adsorption energies were calculated using the following equation: 
ΔEads = E[slab + ads.] − E[slab] − E[ads.], where E[slab + ads.], E 
[slab], and E[ads.] indicate the DFT total energies of the 
slab+adsorbate, slab-only, and adsorbate-only systems, respectively. 
The adsorption energy was referenced to the stable and relevant gas 
states, including H2, H2O, and CO [3,49]. The Vienna Ab initio Simu-
lation Package (VASP) was used for all DFT calculations. The 
projector-augmented-wave (PAW) pseudopotentials, the revised 
Perdew-Burke-Ernzerhof (RPBE) exchange correlation functional [50], 
and Grimme’s DFT-D3 approach [51] (for a better description of van der 
Waals interactions) were used. It should be noted that the Hubbard U 
correction was not included in this work. Although the Hubbard U 
corrections are often critical for metal oxide catalyst systems with highly 
localized d states, they have a minor effect on the adsorption energy in 
pure metal systems with delocalized states (materials of current in-
vestigations) within only 0.05 eV error. A plane-wave kinetic energy 
cutoff of 520 eV was used. For the k-point sampling, a Monkhorst-Pack 
mesh of 16 × 16 × 16 was used for bulk systems, and a Monkhorst-Pack 
mesh of 4 × 4 × 1 was used for slab systems (2 ×2 supercells). The slabs 
constituted four layers, where the top two layers and adsorbates were 
fully relaxed until the forces acting on the individual atoms were less 
than 0.05 eV/Å. To avoid spurious interactions between slabs, a vacuum 
spacing of 15 Å (in the z-direction) was guaranteed. A total of nine 
adsorption sites on the (111) slabs based on the L12 alloy (M3A) were 
considered. Fig. S1B shows these positions. First, two top sites exist: one 
on the matrix element (M) and the other on the alloying element (A). 
Next, three bridge sites exist: two between matrix-alloying elements 
(MA) and the other between matrix–matrix elements (MM). Finally, 
four hollow sites exist: two FCC sites (FCC(M) and FCC(A) classified 
based on the atom type at the subsurface layer) and two HCP sites (HCP 
(M) and HCP(A) classified likewise). The most stable sites differed by 
adsorbate type. Notably, H, and O species were generally stable at hol-
low sites rather than bridge sites. OH and CO species were placed 
vertically, but no particular preferences for the top, bridge, and hollow 
sites were observed. In the case of OOH, to minimize the substantial 
computational cost, we decided to limit ourselves to four adsorption 
sites, chosen based on their stability with respect to OH. We consistently 
used the various adsorption sites for each adsorbate across different 
materials. For each material, we considered various adsorption sites for 
the same adsorbate species in order to construct our database, selecting 
the most stable adsorption site to construct the Gibbs free energy 
diagram. 

The free energies of the adsorbates were estimated under standard 
reaction conditions (pH = 0; T = 298 K; P = 1 atm) at a potential of U=

0. We assumed that the chemical potential of the solvated protons and 
electrons (H+ + e− ) was in equilibrium with that of hydrogen in the gas 
phase (0.5 H2). The thermochemical free energy was defined as ΔGads =

ΔEads + ΔGcorr, where ΔGcorr denotes the free energy correction term 
[37]. The reference states for the adsorbates in the ΔGads calculations 
were H2O, H2 and CO gas, as in ΔEads calculations [49,52,53]. Solvation 
effects were considered by employing constant values (OH: 0.5 eV, OOH: 
0.25 eV) obtained from explicit water bilayer models as reported in a 
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previous literature [54]. 

2.2. ML model development 

For SGCNN, the surface graph was constructed based on the crystal 
structures of the top two layers of the slab and adsorbates. The elemental 
properties of each ith atom (node) in a system were encoded into an atom 
vector vi, which only constituted the information available in the peri-
odic table of elements. For the node vector, we used the one-hot 
encoding method. Table S1 includes a list of atomic input features 
along with their ranges, units, and categories. The edge (bond between 
the ith and jth atom) was defined only when d(i,j) < ri + rj + Δ, where d(i,j) 
denotes the distance between the ith and jth atom, ri and rj denote the 
covalent radii of each atom, and Δ is the tolerance length, which was set 
as 1.5 Å in our work. Each bond was represented by a bond vector, u(i,j)k 
= 1, where k means in the kth edge between the center node i and the 
neighboring node j. Note that we intentionally set the bond vector as 
distance-insensitive, unlike the original CGCNN work where the bond 
vector was divided into 10 categories. Although the bond vector treat-
ment in CGCNN could improve the graph representation precisely, it 
may limit the discovery of new catalyst materials since predicting the 
surface properties of new materials requires information on relaxed 
structures. For this reason, we intentionally simplified the form of the 
bond vector so that the connectivity information required as an ML input 
was whether or not arbitrary atom pairs were connected (yes or no 
question) rather than distance values. 

We proceeded the CNN processes on top of each surface graph, which 
was composed of a series of convolutions, pooling, and FCLs. The 
convolution functions updated each atom vector by concatenating 
neighbor vectors z(t,f)

(i,j)k = vi
(t,f) ⊕ vj

(t,f) ⊕ u(i,j)k and then performing con-
volutions as follows: 

vi
(t+1,f ) = vi

(t,f ) +
∑

j,k
σ
(

z(t,f )
(i,j)kW1

(t,f ) + b1
(t,f )

)
⊙ g(z(t,f )

(i,j)kW2
(t,f ) + b2

(t,f ))

where the convolutional layer and filter numbers are denoted by the t 
and f parameters, respectively. W1

(t,f), W2
(t,f), and b1

(t,f), b2
(t,f) are the 

convolution weight matrices and biases of the tth layer and fth filter, 
respectively. ⊕ denotes concatenation, ⊙ denotes elementwise multi-
plication, σ is a sigmoid function, and g is the exponential linear unit 
(ELU) activation function [40]. The normalized summation of all atom 
vectors (after R convolutions) was chosen as the pooling element, i.e., 
vpool = Σi,fvi

(R,f). Each atom vector was collected in the same dimension 
as the final function vector obtained from the pooling phase. Finally, the 
pooled vectors were connected with the adsorbate binding energy 
through the FCLs. The following hyperparameters were checked, and the 
optimized values are shown in parentheses: the number of convolution 
filters and layers (1 filter, 3 layers), learning rate (5 × 10− 3), exponen-
tially decaying learning rate (0.97 for every 100 epochs), nodes of the 
FCLs (3 layers with 10 → 4 → 1 nodes/layer), standard deviation of 
naturally distributed random initial weights (0.01), batch size (64), and 
total number of epochs (800). The mean squared error (MSE) was used 
as the loss function J(y, yˆ(W)). The Adam optimization algorithm was 
used to minimize the loss function J during the training process. To 
minimize overfitting, we used L2 regularization techniques. The opti-
mized L2 regularization coefficients were 10− 2. Table S2 includes a list 
of hyperparameters and their ranges for the optimization process. 

2.3. Experimental fabrication of Cu3Au film by sputtering 

The prepared Ni electrodes were placed in a vacuum chamber of a 
direct-current (DC) magnetron sputtering system. To produce a Cu3Au 
thin film, 99.99 % pure 3-inch Cu target and 99.99 % pure Au chips 
(1 cm2) were used. Four gold chips were placed crosswise on the Cu 
target, two by two, and then the process was carried out. The base 
pressure of the vacuum chamber was 2.5 × 10–6 Torr. The working 

pressure was maintained at 2.5 mTorr by flowing Ar (15 sccm) gas. A DC 
sputtering power of 150 W was applied to the sputtering target for 
30 min, leading to a Cu3Au film 800 nm thick deposited on the substrate 
(for example, Ni electrodes, Si wafer). 

2.4. Experimental fabrication of the Pt layer by arc plasma deposition 
(APD) 

Pt was deposited onto the substrate (for example, Ni electrodes, 
Cu3Au thin film on Ni electrode, and Si wafer) by a coaxial pulsed APD 
system (ULVAC, ARL-300) at room temperature under a 10− 7 Torr 
vacuum. In the APD system, a cylindrical cathode composed of a Pt 
target and a trigger electrode were placed in the center, and a cylindrical 
anode was coaxially mounted to surround the cathode. A defined 
amount of charge was stored in a discharge capacitor connected to the 
cathode. When a trigger pulse induced an arc discharge between the 
surface of the target cathode and the anode, the accumulated charge 
flowed from the cathode to the anode through the arc for a short time, 
typically less than 1 ms. During this process, the temperature around the 
cathode increased by tens of thousands of degrees (◦C) or more, 
vaporizing the cathode material and generating a high kinetic energy 
(>10 km s− 1) ionized plasma pulse. Immediately after discharging, the 
capacitor was rapidly recharged to generate the next plasma pulse. The 
controllable parameters in this process were the discharge capacitor 
voltage V, the discharge capacitor capacity C, and the number of plasma 
pulse shots n. In this study, V and C were set at 50 V and 1080 μF, 
respectively, and the deposition amount of Pt was controlled by 
changing n. 

2.5. Electrochemical measurement 

All electrochemical measurements were conducted with a 3-elec-
trode rotating ring disk system using a potentiostat (Autolab, PGSTAT 
302 N). A nickel disk electrode with an area of 0.196 cm2 was used as 
the working electrode. Pt wire and Ag/AgCl (3 M KCl) electrodes were 
used as the counter and reference electrodes, respectively. The poten-
tials vs. Ag/AgCl were converted to the reversible hydrogen electrode 
(RHE) using the equation below:  

ERHE = EAg/AgCl + E◦
Ag/AgCl + 0.0591 pH                                                

where ERHE is the converted potential vs. RHE, E◦
Ag/AgCl = 0.210 at 

298 K, and EAg/AgCl is the experimentally measured potential against 
Ag/AgCl reference. The ORR curves were recorded at a scan rate of 
5 mV s− 1 with 1600 rpm in O2-saturated 0.1 M KOH. The kinetic current 
density (jk) was calculated using the Koutecky-Levich equation. 

jk =
jlim × j
jlim − j  

where j is the experimentally measured current density and jlim is the 
diffusion-limiting current density [5]. 

2.6. Materials characterization 

The X-ray diffraction (XRD) results were measured by means of a D8- 
Advanced instrument (Bruker, Germany) using Cu Kα as the radiation 
source. Scanning electron microscopy (SEM) (Inspect F50, FEI, USA) and 
transmission electron microscopy (TEM) (Tecnai F20, FEI, USA) with 
EDS were used to examine the morphologies and structures of the 
samples in this study. All samples were analyzed for cross-sectional TEM 
images after extraction of TEM lamellae using a focused ion beam (FIB, 
NX5000, Hitachi, Japan). 
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3. Results and discussion 

3.1. Adsorption energy as a fuel cell performance descriptor 

The first step is to identify the descriptors for each ORR and HOR 
performance. For the ORR, where O2 molecules are completely reduced 
to H2O through a four-electron pathway (Fig. 1A), the rate determining 
step (RDS) is the largest uphill step in the free energy (ΔG) diagram 
along the protonation steps from O2 to H2O at the equilibrium potential 
(1.23 V vs. reversible hydrogen electrode (RHE)). Recent studies on the 
ORR over low-index metal surfaces suggest that one of the following two 
protonation steps governs the limiting potential: O2 + (H++e-) → *OOH 
(O2→*OOH hereafter) or *OH + (H++e-) →H2O (*OH→H2O hereafter) 
[14,55]. We also confirm that the RDS is *OH→H2O for Pt(111) and 
O2→*OOH for Au(111) (* denotes a surface site). Note that the ΔG di-
agrams for other metal cases are available in Fig. S2, where for some 
metals (Ag, Ir, Pd, and Rh) that form relatively stable *OOH interme-
diate states, *OH→H2O is the RDS. Since we assume that either 
O2→*OOH or *OH→H2O is the RDS, the limiting potential (UL) is 
defined as the maximum value of ΔG*OOH – ΔGO2 and ΔGH2O - ΔG*OH 
divided by the electron charge (e). 

Fig. 1B shows a contour plot of the UL values of six pure metals (with 
closest-packed surfaces) on the axes of ΔG*OOH and ΔGOH, and a qua-
silinear scaling relation was observed. Overcoming the scaling relation 
between ΔG*OOH and ΔG*OH is key to discovering any promising can-
didates with a UL value larger than the value of 0.56 V for Pt(111), as 

highlighted in the promising zone in Fig. 1B. It is well known from 
theories and experiments that Pt(111) shows the largest ORR UL value of 
approximately 0.56 V among pure metals [56]. Thus, the UL range of 
0.56–1.23 V should be the targeted promising zone in this study. 

On the other hand, the HOR is a simpler reaction (Fig. 1C), involving 
two proton-electron transfer reactions with only one intermediate spe-
cies (*H). H2 molecules are supplied to the anode of fuel cells, and the H2 
adsorbed on the catalytic surfaces dissociates into atomic hydrogen 
(*H), being finally converted to the pair of protons and electrons 
(H++e-): 1/2 H2 → *H → (H++e-). Herein, ΔG*H serves as the HOR ac-
tivity descriptor, and a |ΔG*H| value smaller than 0.24 eV (that of Pt 
(111)) is desired. In addition, CO poisoning on the catalytic surfaces is a 
notorious problem for the anode; as a result, weaker CO binding is 
desired for fuel cell durability [56,57]. Therefore, the promising zone for 
the HOR is defined by the box in Fig. 1D with boundaries of |ΔG*H| of 
0.24 eV and ΔG*CO of − 1.4 eV (both values corresponding to pure Pt). 

3.2. Database generation and ML model development 

Previous studies in Fig. 1 confirm that the adsorption energies of five 
adsorbates (O, OH, OOH, H, and CO) are directly related to ORR and 
HOR performance. Using DFT calculations, we constructed our own 
surface database of 9267 adsorption energies for these five adsorbates 
(Fig. 2A and B). The catalytic slabs include 10 unary and 348 binary L12 
alloy systems (X3Y). For the L12 alloy, X (matrix element) is an FCC 
element, and Y (alloying element) is an FCC, BCC, or HCP element from 

Fig. 1. Adsorption energies as ORR and HOR performance descriptors. (A) ORR Gibbs free energy diagram for associative ORR pathways on Pt(111) and Au(111). 
RDSs are highlighted with arrows to indicate the important step in the reaction. (B) Two-dimensional (2D) contour map of limiting potential (UL). The six calculated 
pure metals are shown on the map. The contour plot highlights the scaling relation line between ΔG*OOH and ΔG*OH (ΔG*OOH = ΔG*OH + 3.36 eV), which lies in a 
range similar to that of a previous report[67]. The promising zone is defined as the area with a UL value larger than 0.56 V (Pt(111) value). (C) HOR Gibbs free energy 
diagram of Pt(111) and Au(111). (D) Comparison of the free energies of CO and H adsorbates for 9 pure transition metals. The promising zone for the HOR is defined 
as the region where the |ΔG*H| value is smaller than 0.24 eV and the ΔG*CO value is greater than − 1.4 eV (both Pt(111) values). 
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period numbers 2–6 and group numbers 1–14 on the periodic table 
(Fig. S1). The exposed surfaces of the slabs are (111), which is the 
closest-packed surface of the L12 binary alloy. More details about 
database generation are provided in the Methods section, and the 
number of data points for each adsorbate is shown in Table S3. Fig. 2B 
shows the population distribution of our adsorption energy (ΔEads) 
database for each adsorbate. Note that the energies span a very wide 

range (− 14 to 5 eV), and the dataset is uniformly based on various 
chemical elements (41 elements). Such wide and uniform data sampling 
is critical for the following ML developments. 

The ML model to predict adsorption energy used in this work is the 
slab-graph convolutional neural network (SGCNN), where slab graph 
constructions and bond vector treatments are modified from the original 
CGCNN model for catalytic system applications (Fig. S3). Detailed 

Fig. 2. Database generation and model training. (A) Types of adsorbates in the database (O, OH, OOH, H, and CO) relevant to ORR and HOR performance. (B) 
Adsorption energy populations for each adsorbate. This self-established database includes a total of 9267 adsorption energies for 10 unary and 348 binary L12 alloy 
systems (X3Y). The L12 alloy systems were chosen because they are composed of FCC elements (X) and FCC, BCC, and HCP elements (Y) in period numbers 2–6 and 
group numbers 1–14. (C) Feature optimization process of 12 types of features. The optimal combination was found to be group number, period number, melting 
point, and volume, leading to an MAE of 0.16 eV. (D) MAE value for each adsorbate and overall data. (E) Comparison between the predicted adsorption energy and 
DFT adsorption energy. The loss function change with increasing epochs is presented in the inset. 
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information about graph encoding, convolution and pooling functions, 
network architectures, and hyperparameters is provided in the Methods 
section. For node vectors, twelve elemental properties available in the 
periodic table of elements were considered, but the combination of only 
four features (group number, period number, melting point, and vol-
ume) led to the smallest error of 0.16 eV for our dataset of 9267 energy 
values (Fig. 2C). The addition of extra features caused overfitting and 
undesirably increased the mean absolute errors. In Fig. 2D and Table S4, 
the ML test performance of each adsorbate (O, OH, OOH, H, and CO) is 
shown separately. The MAE of the CO adsorbate was the smallest at 
0.14 eV, probably due to the narrowest range of adsorption energies. 
The MAE of the OOH adsorbate was the largest at 0.29 eV, likely due to 
the smallest size of the corresponding dataset. The MAE value of the 
total dataset was 0.16 eV after 5-fold cross-validations, which is better 
than that in our own previous report due to the increased database size 
and is small enough for effective material screening processes [37]. No 
overfitting was observed during ML training, as shown in the inset of 
Fig. 2E. 

3.3. A fully ML-based screening protocol 

Using the well-trained ML model, we next explored the massive 
ternary alloy space. In this study, we focused on a particular ternary 
structure, namely, L12 alloy core@shell (X3Y@Z) catalysts, which is not 
a part of our ML learning database. The harsh operating environment in 
fuel cells limits the shell elements (Z) in our targeted structure (X3Y@Z), 
and we considered Pt and Au as shell elements based on the standard 
reduction potential. In Fig. 3, the fully ML-driven screening protocol is 
illustrated. This screening process was extremely fast since it did not 
require any DFT or equivalent theory-level inputs. For the prediction of 
the adsorption energy of X3Y@Z alloys, we used the same adsorption 
sites as with the binary alloys, with the exception of OOH. In the case of 
OOH, we considered top, bridge, and hollow sites without restrictions, 
this adjustment was facilitated by the rapid predictive capabilities of the 
machine learning model. A total of 3180 ternary alloys and 82,967 
related slab-adsorbate structures were fed into the filtering process, 
which would not be practically feasible solely by using quantum 

Fig. 3. ML-driven material screening workflow for each 
anode and cathode of fuel cells. This protocol is a highly 
efficient and fast method for identifying promising and 
low-cost catalysts. The workflow involves feeding a total of 
3180 ternary alloys and 82,967 related slab-adsorbate 
structures into a filtering process. Three criteria are used 
in the screening process: stability of the core and shell 
structures, mechanical stability between the core and shell, 
and catalytic performance. The stability of the shell 
element is determined by its electrochemical stability 
based on the standard reduction potential. The core sta-
bility is determined by the formation energy of the alloy 
core. The mechanical stability is estimated by the lattice 
mismatch, and the catalytic performance is predicted by 
the pretrained SGCNN model. Ultimately, after ML filtering 
and DFT verification processes, only 10 and 37 promising 
candidates for the ORR and HOR, respectively, survived.   
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mechanical calculation methods. 
Three criteria were used in the screening protocols. The first is the 

stability of each core and shell structure. For the shell element (Z), we 
selected the electrochemically stable elements based on the Pourbaix 
diagrams that would not dissolve under the working conditions, which 
led to Au and Pt for the ORR and Au, Pt, Ir, Pd, Ag, Rh, Ru, Tc, Re and W 
for the HOR. On the other hand, for the core (X3Y), the formation energy 
of each alloy core was used to estimate its thermodynamic stability (Ef 
<0.1 eV). We used the pretrained CGCNN model (MAE of only 0.04 eV) 
to predict the formation energies of these alloys. Note that the threshold 
here was 0.1 eV instead of zero to avoid missing any promising candi-
date materials. 

The second screening criterion is the mechanical stability between 
the core and shell, which was estimated by their lattice mismatch [58]. 
The cases with lattice parameter mismatches larger than 5 % were not 
selected at this step. The last criterion is the catalytic performance, and 
the pretrained SGCNN model was used here. For the ORR, materials with 
UL > 0.56 eV (the value of pure Pt) passed the filtering process. Simi-
larly, for the HOR, materials with |ΔG*H| < 0.24 eV and ΔG*CO 
> − 1.4 eV (the values of pure Pt) passed. In addition, we also excluded 
materials that included reactive elements (alkali metals and alkaline 
earth metals: Li, Na, K, Rb, Cs, Be, Mg, and Ba), toxic elements (Cd, Hg, 
Tl, and Pb), the radioactive element Tc, and the very expensive element 
Re. These filtering processes finally resulted in only 54 and 94 promising 
candidates for the ORR and HOR, respectively, which are potentially 
synthesizable and may outperform Pt at each electrode. 

3.4. DFT verification of filtered-out candidates 

Although these ML-filtered candidates are promising, they must be 
further examined using DFT verifications prior to experimental trials. 
The CGCNN and SGCNN models inevitably involve some errors in pre-
dictions for ternary materials (not a part of our training dataset), and 
DFT-based verifications are expected to further reduce the number of 
promising materials. First, for the ORR, the main checkpoint from DFT 
verification is whether or not UL (limiting potential) is larger than 
0.56 V (the value of pure Pt). In Fig. 4A, only 10 of the 54 ML-filtered 
candidates satisfied this condition even from DFT verifications, which 
would outperform Pt(111) for the ORR. Four of these are Au shell ma-
terials, and the remaining six are Pt shell materials, which are listed as 
follows in the order of high to low UL values (DFT predictions): 
Pd3Ta@Au (UL=0.96 V), Pd3Ti@Pt (UL= 0.93 V), Pd3V@Pt (UL=

0.92 V), Pd3Mo@Pt (UL= 0.87 V), Pd3Nb@Au (UL=0.87 V), Cu3Ti@Pt 
(UL= 0.72 V), Cu3Au@Pt (UL= 0.72 V), Cu3Hf@Pt (UL= 0.72 V), 
Pt3Mo@Au (UL=0.71 V), and Pt3Hf@Au (UL= 0.69 V). The Gibbs free 
energy diagrams of these materials are provided in Fig. S4. Note that 
these new ternary materials marked in Fig. 4A deviate from the scaling 
relations of unary metals, which indicates that ternary alloying indeed 
provides catalytic properties different from those of unary or binary 
cases. Interestingly, Pd3V@Pt has already been reported in previous 
experimental work where a bimetallic alloy core was used [59]. It is 
noteworthy that some Au shell materials, such as Pd3Ta@Au and 
Pd3Nb@Au, show even larger UL values than those of Pt shell materials. 
This result is surprising given that pure Au is only slightly active for the 
ORR; however, the alloy core can substantially stabilize *OOH species 
and modify the catalytic energetics of core@shell catalysts, as shown in 
Fig. S4. 

In Fig. 4B, the prices of these 10 catalysts are listed. For the 
core@shell structure, the volume of the thin shell layer is negligibly 
smaller than that of the core, and thus, the price evaluations are only 
based on the price of the alloy core. In particular, materials with Cu as a 
matrix element (Cu3Au@Pt, Cu3Hf@Pt, and Cu3Ti@Pt) are much less 
expensive than other candidates such as pure Pt. 

In addition, the HOR candidates were also verified via DFT compu-
tations. The main checkpoint here was whether or not |ΔG*H| was less 
than 0.24 and ΔGCO was larger than − 1.4 eV to achieve high HOR 

activity and suppressed CO poisoning (for reduced CO poisoning than 
Pt). Only 37 materials out of 94 ML-screened candidates were selected 
even after the DFT verification processes as follows: 5 materials with a Pt 
shell, 3 materials with an Ir shell, 24 materials with a Pd shell, 1 material 

Fig. 4. DFT verification of filtered-out candidates. (A) ORR performance of the 
10 promising candidates from the fully ML-driven material prediction work-
flow, as verified by DFT in 2D activity maps in terms of the OH and OOH free 
energies. Au shell and Pt shell materials are shown in blue and red, respectively. 
These candidates all exhibit UL values greater than 0.56 V, which is the value of 
pure Pt, making them potential ORR catalysts that outperform Pt(111). (B) ORR 
catalytic activity (star) and material price (bar) of 10 ORR catalysts (X3Y@Z). 
For the price axis (left axis), the platinum price is set to 100 %. Materials 
containing Cu as a matrix element (Cu3Au@Pt, Cu3Hf@Pt, and Cu3Ti@Pt) are 
particularly cost-effective compared to other candidates and pure Pt. (C) HOR 
performance of the 37 promising candidates, as verified by DFT in terms of H 
and CO free energies. These candidates all satisfy the conditions that |ΔG*H| is 
less than 0.24 and ΔGCO is greater than − 1.4 eV. 
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with a Ag shell, and 4 materials with a Rh shell. The top five materials in 
terms of HOR activity are as follows in the order of high to low |ΔG*H| 
(DFT values): Pt3Ta@Ag (|ΔG*H|=0.01 eV, ΔGCO = − 0.01 eV), 
Al3Fe@Pd (|ΔG*H|=0.01 eV, ΔGCO = − 0.44 eV), Al3W@Pd (|ΔG*H|=
0.02 eV, ΔGCO = − 0.82 eV), Al3W@Rh (|ΔG*H|=0.02 eV, ΔGCO =

− 0.76 eV), and Al3Co@Pd (|ΔG*H|=0.03 eV, ΔGCO = − 0.59 eV). The 
Gibbs energy diagrams of these materials are provided in Fig. S5. 
Moreover, the top five candidates in terms of the CO resistance are as 
follows in the order of high to low ΔG*CO (DFT values): Pt3Ta@Ag (|Δ 
G*H|=0.01 eV, ΔGCO = − 0.01 eV), Al3W@Pt (|ΔG*H|<0.20 eV, ΔGCO =

− 0.09 eV), Al3Cu@Pt (|ΔG*H|=0.23 eV, ΔGCO = − 0.20 eV), Al3Au@Pt 
(|ΔG*H|=0.11 eV, ΔGCO = − 0.37 eV), and Al3Pd@Pt (|ΔG*H|=0.09 eV, 
ΔGCO = − 0.38 eV). Interestingly, Pt3Ta@Ag appeared to be the top 
candidate in both the |ΔG*H| and ΔGCO categories, potentially offering 

high HOR activity and strong CO resistance. In addition, the prices of the 
final 37 HOR candidates are provided in Table S5. The alloy cores 
involving Al or Cu as the matrix element are more cost-effective than 
other candidates or pure Pt. 

While machine learning has significantly accelerated material pre-
diction, a substantial gap between DFT and machine learning models 
persists due to the still limited prediction accuracy of the latter. This 
discrepancy can be primarily attributed to two major factors. First, our 
primary target (the ternary alloys) suffer from a paucity of adsorption 
energy data. Considering that the goal of our research is to predict high- 
performing ternary alloy catalysts using a binary database, the absence 
of explicit incorporation of ternary alloy adsorption energy data into our 
analysis presents a significant challenge. Second, our machine learning 
model demonstrates a relatively lower predictive accuracy for OOH 

Fig. 5. Experimental fabrication and characterization of Cu3Au@Pt thin film catalyst for ORR. (A) Schematic illustration of the fabrication process of a Cu3Au@Pt 
thin film by DC-MS and APD processes. For the deposition substrate, nickel rotating disk electrodes (RDEs) were used to measure the electrochemical ORR activity, as 
shown in Figs. S6, S12 and S13. (B) Cross-section SEM image of Cu3Au thin film deposited by magnetron sputtering. The insets indicate the corresponding top-view 
SEM image and EDS analysis result. (C) XRD spectra of pristine Cu3Au and Cu3Au@Pt (80 shots) thin films after Pt deposition by the APD process. (D) Cross-sectional 
TEM and EDS mapping images of the Pt layer depending on the number of plasma pulse shots through the APD process. 
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adsorbates, which contributes to the discrepancy between DFT and 
machine learning results. As indicated in Table S4, the predictive ac-
curacy of our model for OOH adsorbates is lower compared to other 
adsorbates. This can largely be attributed to the high computational cost 
associated with OOH, which results in a more limited dataset for OOH 
adsorption energies compared to other adsorbates, as illustrated in 
Table S3. Moving forward, we suggest expanding the database, partic-
ularly by increasing the amount of available OOH data. We anticipate 
that a more comprehensive database would enable more accurate pre-
dictions, thus bridging the gap in prediction accuracy. 

3.5. Experimental fabrication of novel ORR catalysts 

The promising catalyst candidates suggested from the above design 
protocol need to be experimentally verified. Since the sluggish ORR 
kinetics at the cathode are the key bottleneck for fuel cell commercial-
ization, we focused on a material for the ORR. Specifically, Cu3Au@Pt. 
Cu3Au@Pt was chosen from the 10 candidates, primarily due to not only 
its higher UL value (0.72 V) than pure Pt (0.56 V) but also its cost- 
effectiveness (Fig. 4B). In addition, previous experimental studies re-
ported binary Cu3Au alloy-based nanomaterials, supporting the poten-
tial synthesizability of the ternary Cu3Au@Pt system [60,61]. 

In Fig. 5A, we employed thin film fabrications rather than nano-
particles (NPs) to accurately compare the intrinsic catalytic performance 
between pure Pt and our ternary Cu3Au@Pt system. For core-shell NP 
synthesis by wet chemical processes, it is very difficult to control the 
shell thickness distributions of core-shell NPs [62]. Furthermore, when 
electrochemically testing powder-type NPs, several factors, including 
the catalyst ink formulation (e.g., various mixing ratios between cata-
lyst, ionomer, and various solvents), dispersion quality and drying of the 
film, can substantially affect the catalytic performance, which makes 
accurate comparisons between pure Pt and our ternary Cu3Au@Pt sys-
tems very difficult [63,64]. Therefore, we fabricated Cu3Au@Pt thin 
films using dry processes based on direct-current magnetron sputtering 
(DC-MS) and arc plasma deposition (APD) methods so that their intrinsic 
catalytic properties can be evaluated by excluding those extrinsic 
factors. 

The Cu3Au thin film (alloy core part) was first deposited by DC-MS. 
The desired 3:1 stoichiometric Cu3Au alloy was obtained by the co- 
sputtering process. When co-sputtering was performed on a 3-inch Cu 
target while increasing the number of Au chips (1 cm2), the Au 
composition ratio in the formed alloy thin film gradually increased from 
7.7 to 26.9 at% (Figs. S6 and S7). Through X-ray diffraction (XRD), 
energy dispersive spectrometry (EDS), scanning electron microscopy 
(SEM), and transmission electron microscopy (TEM), it was confirmed 
that a Cu3Au alloy thin film (approximately 800 nm thick) was well 
formed (Fig. 5B, C, and Fig. S8). 

The next step is Pt shell formation on top of the Cu3Au thin films. Pt 
was deposited on a Cu3Au thin film loaded in an APD chamber for 
precise Pt thickness control (Fig. 5A and Fig. S9). The APD technique is a 
type of physical vapor deposition (PVD) in which a solid metal target is 
directly evaporated with high-ionization plasma pulses in a vacuum 
environment [65]. Unlike other continuous deposition-based PVD 
methods such as sputtering or e-beam evaporation, APD is quite ad-
vantageous since the deposition amount can be finely tuned by the 
number of plasma pulse shots with a short duration (<1 ms) [66]. Pre-
cise Pt shell thickness manipulation by the APD process allows accurate 
analysis of alloying effects in core-shell structured catalysts. To under-
stand Pt thicknesses depending on the number of shots (n), 
cross-sectional TEM images and the corresponding EDS mapping of the 
deposited Pt layer on the Si wafer are shown in Fig. 5D. The Pt thickness 
linearly increased as n increased (Fig. S10). As a result, for the case of 50 
shots, the Pt thickness was less than 1 nm, and some regions were found 
that were only partially covered on the substrate (non-monolayer). For 
the case of 80 shots, the Pt thickness was approximately 1.6 nm, and the 
Pt horizonal distribution was uniform. For the others with 120 and 200 

shots, the Pt films were much thicker, 2.5 nm and 4.4 nm, respectively. 
Additionally, we performed X-ray diffraction (XRD) measurements to 
investigate the interaction of Cu3Au and Pt thin film (Fig. S11). As a 
result, we observed an increase in the intensity of the XRD peaks asso-
ciated with Pt with increasing thickness of the Pt shell deposited on the 
Cu3Au thin film and found that the peak position of the (111) crystal 
plane of Pt, which is typically observed at 39.75◦ in the Pt thin film, 
shifts to a higher angle in Cu3Au@Pt due to the compressive strain effect 
caused by the Cu3Au thin film. This interaction between the Cu3Au core 
and the Pt shell is responsible for the enhanced ORR properties of Pt in 
the core-shell compared to conventional pure Pt. 

3.6. ORR performance of Cu3Au@Pt 

As shown in Fig. 6, the ORR characteristics of Cu3Au@Pt films with 
various Pt shell thicknesses on the Ni RDE electrode were investigated 
through the liquid half-cell. The tested samples included Cu3Au and 
Cu3Au@Pt with Pt thicknesses varying from the non-monolayer to 
4.4 nm. The sample with the thickest Pt film (4.4 nm) was almost 
identical to the pure Pt film (29.4 nm) in terms of surface ORR since the 
core alloying effects were negligibly small. To accurately evaluate the 
core-shell effects on the ORR even for very thin Pt shells in an aqueous 
electrolyte, the stability of the Cu3Au core should be secured during the 
electrochemical measurement. For this reason, liquid half-cell tests were 
performed in an alkaline electrolyte (O2-saturated 0.1 M KOH electro-
lyte) instead of an acidic electrolyte. 

For the electrochemical measurements, the polarization curves 
(Fig. 6B) and Tafel plots exhibiting the kinetic current density (jk) are 
presented in Fig. 6B and C, respectively. The ORR activity of Cu3Au@Pt 
with a 1.6 nm-thick Pt shell (80 shots in Fig. 5) was higher, with higher 
jk values, than that of the other cases of the non-monolayer (50 shots), 
2.5 nm (120 shots), 4.4 nm (200 shots) Pt shells, and 29.4 nm-thick Pt 
thin film without Cu3Au core (1000 shots, to represent pure Pt). Inter-
estingly, it is noteworthy that the Cu3Au thin film without a Pt shell was 
also an ORR-active material, giving rise to a typical ORR polarization 
curve. The kinetic current density calculated at 0.85 VRHE of the 
Cu3Au@Pt thin film (1.6 nm-thick Pt) was 1.57 mA/cm2, which is 
approximately 2.2 times higher than that of the pristine Cu3Au thin film 
(0.72 mA/cm2) (Fig. 6D). This result confirms that the Cu3Au core and 
Pt shell have a synergistic effect on ORR activity, in excellent agreement 
with our DFT and ML predictions. For the case of the non-monolayer (50 
shots) Pt shell, the film’s surface was not entirely covered, as shown in 
the TEM images (Fig. 5D), which likely led to the current density 
(1.09 mA/cm2) being lower than that for the 1.6 nm case (surface fully 
Pt-covered). For the 2.5 nm- and 4.4 nm-thick Pt shells, the Pt shells 
were too thick, and the core effects were significantly diminished, 
leading to lower kinetic current densities of 0.91 mA/cm2 and 0.81 mA/ 
cm2, respectively. The ORR activity of the 29.4 nm-thick Pt thin film was 
intentionally measured (Figs. S14 and S15) to represent the performance 
of pure Pt, and the kinetic current density was measured to be approx-
imately 0.8 mA/cm2. This value is almost identical to the jk of the 
4.4 nm case, indicating that the core-shell effect almost disappeared 
after 4.4 nm. 

The catalyst with the 1.6 nm-thick Pt shell that exhibited the best 
ORR performance was also much more advantageous than those with 
thicker shells in terms of the loading amount of expensive Pt. For the 
1.6 nm case, the Pt loading amount was 3.43 μg Pt/cm2, which is about 
2.7 times and 18.4 times lower than the loading of 9.43 μg Pt/cm2 and 
63.03 μg Pt/cm2 for the 4.4 nm and 29.4 nm cases, respectively. Despite 
the much lower Pt usage, the kinetic current density of the 
Cu3Au@ 1.6 nm-thick Pt film was approximately two times higher than 
that of films with much thicker Pt thicknesses (4.4 nm and 29.4 nm) due 
to the core-shell effect. Since not only activity but also stability are 
important factors in practical application, we evaluated the electro-
chemical stability of Cu3Au@Pt thin film (1.6 nm-thick Pt) and 29.4 nm- 
thick Pt thin film in the alkaline environment for 5000 cycles of ADT 
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(Fig. S16). As a result, there was a slight decrease of about 7 mV for 
29.4 nm-thick Pt thin film and about 9 mV for Cu3Au@Pt thin film 
(1.6 nm-thick Pt) in terms of the half-wave potential after the ADT. In 
other words, the electrochemical stability of the core-shell thin films in 
the alkaline environment was almost comparable to that of Pt thin films, 
indicating that the core-shell catalysts presented in this study possess not 
only excellent activity but also high durability. 

Additionally, we also measured the ORR performance of the 
Cu3Au@Pt thin film (1.6 nm-thick Pt) and 29.4 nm-thick Pt thin film in 
an acid electrolyte (i.e., 0.1 M HClO4) and found that the ORR perfor-
mance of Cu3Au@Pt thin film (1.6 nm-thick Pt) is much better than that 
of 29.4 nm-thick Pt thin film in an acidic electrolyte, likewise in an 
alkaline electrolyte (Fig. S17). Although a continuous decrease in ORR 
performance was observed during the measurement process due to the 
dissolution issue of the Cu3Au core, the ORR performance improvement 
due to the core-shell effect was consistently confirmed in both acidic and 
alkaline environments. This result revealed that the ML-based screening 
and experimental verification identified both a low-cost and high- 
performance core-shell catalyst for fuel cells. 

4. Conclusion 

In summary, aiming at efficient and low-cost electrocatalysts in fuel 
cells, we proposed a fully ML-driven screening protocol to explore the 
massive ternary alloy space. A graph neural network was trained with 
self-established surface DFT databases to accurately predict the 

adsorption energy for diverse adsorbates, including H, CO, O, OH, and 
OOH. In our ML-based design protocol, materials were screened in terms 
of their structural stability, catalytic performance, and cost- 
effectiveness. For the ternary alloy core@shell (X3Y@Z), this sequen-
tial process selected only 10 and 37 promising candidates for the ORR 
and HOR, respectively, which potentially had lower cost and higher 
performance than pure Pt. Finally, via experimental verifications, we 
observed that the film of Cu3Au@Pt, one of 10 selected materials for the 
ORR, indeed outperformed the Pt film, as confirmed by the approxi-
mately 2-fold increase in kinetic current density with the 2.7-fold 
reduction in Pt usage. We demonstrated the ML-enabled identification 
of a fuel cell catalyst in a massive compositional space, and this protocol 
can be universally expanded to other multicomponent systems and 
catalysis problems. 

Code availability 

The SGCNN model is implemented using the TensorFlow framework 
(version 1.7.0) in Python (version 3.5). To obtain 5-fold cross-validation 
results for each SGCNN network using the GeForce RTX 2080 Ti GPU, 
approximately an hour of training time is needed. The source for the 
SGCNN implementation can be found in the following link: https://gith 
ub.com/myungjoon/SGCNN. 

Fig. 6. Electrochemical ORR performances of Cu3Au@Pt thin films. (A) Concepts of Cu3Au@Pt thin film for ORR according to Pt thickness controlled by the number 
of plasma pulse shots in the APD process. (B) ORR polarization curves of Cu3Au and Cu3Au@Pt with various Pt thicknesses (non-monolayer, 1.6, 2.5 and 4.4 nm) and 
a Pt thin film (29.4 nm). The ORR curves were measured in an O2-saturated 0.1 M KOH solution. (C) Tafel plot of the kinetic current density from polarization curves. 
(D) The kinetic current density at 0.85 VRHE and the corresponding amount of Pt loading as a function of the Pt shell thickness. The blue box in the graph indicates the 
region of Pt thicknesses (non-monolayer and 1.6 nm) where the core-shell effect exists. The red dashed line represents the kinetic current density of the Pt thin film 
(29.4 nm) without the Cu3Au core thin film. 
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