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A B S T R A C T   

Despite considerable mechanics modeling-based efforts, accurate predictions of failure progressions of structural 
materials remain challenging in real-world environments primarily due to complex damage factors and defect 
evolutions. Here, we report a novel deep learning-based method for predicting failure properties based on defect 
state evolutions, which enables the full reflection of the damage accumulated in a material until the time of its 
examination. The method uniquely combines nondestructive X-ray computed tomography (X-CT), persistent 
homology (PH), and deep learning. It exploits the PH-encoded features from 3D X-CT images as its only input, 
and outputs failure-related properties. Using two fracture datasets based on low-alloy ferritic steel as a repre-
sentative structural material, the method was demonstrated to reliably classify or predict the local strain (tensile 
dataset) and fracture progress (fatigue dataset). The excellent deep learning performances are attributed to both 
PH analysis and multimodal learning, where key topological features of internal voids, such as their size, density, 
and distributions, are precisely quantified. The proposed method enables accurate prediction of failure-related 
properties at the time of material examination based on void topology progressions, and can be extended to 
various nondestructive failure tests for practical use.   

1. Introduction 

Structural materials are designed to withstand the various damage 
factors that exist in application environments. Despite considerable 
research on material fatigue damage in recent decades, accurate pre-
dictions of the material lifetime remain challenging due to the 
complexity and high variability of real-world environments [1–8]. In 
fact, unexpected accidents caused by material failure have recently 
occurred, including aircraft disintegration in the air, building/bridge 
collapses, gas pipeline explosions, and container ships sinking [9–13]. 
These accidents have resulted in significant loss of life and property and, 
in severe cases, hundreds of casualties. These losses can be minimized by 
predicting when a material will fail and adopting preventative actions 
before material failure. Thus, methods for quantitatively predicting 
failure-related properties in environments where various factors, 
including load, heat, and corrosion, may comprehensively damage 
materials are crucial [14–18]. 

Models for predicting the failure behaviors and lifetimes of structural 
materials have been extensively studied for decades. Examples primarily 
include the mechanics-based finite element method (FEM) combined 
with the Gurson-Tvergaard-Needleman model, the Gunawardena 
model, and the continuum damage mechanics model [19–25]. The FEM 
has facilitated fatigue life predictions based on inputs such as the vari-
ation in yield locus under repeated loading cycles and the corresponding 
stress-life cycle curves (S-N curves). In addition, the geometry of the 
material can be considered, and the FEM has no constraints on the 
loading and boundary conditions applied to the materials [19,26–29]. 
However, this mechanics-based approach is limited in its ability to 
represent microstructural defects that develop differently depending on 
the exposed environmental factors. In this regard, a crystal plasticity 
FEM (CPFEM) has recently been explored to investigate the influences of 
microscopic scale features, including the evolution of microstructural 
defects such as voids and grains [28–32]. This method elucidates the 
stress–strain states near defects such as inclusions and pores, as well as 
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their effects on crack propagation and fatigue lifetime [33]. 
Nevertheless, it remains difficult to reflect the statistical information 

of defects, such as the evolution of their fraction, size, and distribution at 
each failure progression due to prohibitive computational costs, limiting 
the connections between microstructures and macro-properties at 
different length scales (e.g., microstructural defect—strain state-
—fatigue lifetime). In this respect, data-driven machine learning (ML) 
approaches can overcome this scale gap since ML is capable of under-
standing correlations within datasets regardless of their length or time 
scale. Owing to these benefits, various ML techniques, such as random 
forests, support vector machines, and neural networks, have recently 
been used to predict the mechanical properties of metal systems, 
including their hardness [34,35], tensile properties [36,37], and crack 
propagation [38,39]. However, these ML models rely primarily on 
technical parameters such as experimental processing conditions as in-
puts, and no ML models have yet to be developed based on micro-
structural defect state that are obtained nondestructively, which is both 
a fundamental cause of failure and a critical requirement for predicting 
failure progressions in real-world application environments. 

In this work, we propose a deep learning-based method to predict the 
failure properties of structural materials based on their defect states. In 
this study, the X-ray computed tomography (X-CT) is used to nonde-
structively monitor the evolution of the defect states, and persistent 
homology (PH) is used to quantify the void topology within complex 3D 
X-CT data. Our method takes PH-encoded results from X-CT images as its 
only input, and outputs the failure-related properties, such as the local 
strain and fracture progress. The effectiveness of the method was 
demonstrated using two fracture datasets, which were produced by 
tensile and fatigue testing of low-alloy ferritic steel as a representative 
structural material. The method reliably predicted the local strain 
(tensile dataset) and fracture progress (fatigue dataset), achieving mean 
absolute errors (MAEs) of only 0.09 and 0.14, respectively. These values 
are significantly lower than the MAEs of 0.55 and 0.57 obtained for cases 

without PH-based encoding. The remarkable performance enhance-
ments are due to both PH process and multimodal learning, where key 
topological features of internal voids, such as their size, density, and 
distribution, were precisely quantified. The developed workflow could 
be easily extended to other nondestructive scanning methods, including 
phased array ultrasonic testing, for practical use. 

2. Material and method 

2.1. Design framework 

Fig. 1 illustrates the overall scheme of our deep learning method, and 
Supplementary Fig. 1 shows the full test set-up images at each experi-
mental and modeling stage. This method takes X-CT images of structural 
materials at the time of examination as its only input and outputs the 
failure-related properties. For model development and validation, in this 
study, we construct two types of fracture datasets: one produced by 
tensile mechanical testing and one produced by fatigue mechanical 
testing. The two datasets output different predictions: the tensile test 
outputs the local strain, and the fatigue test outputs the fracture prog-
ress. X-CT scanning can identify the positions and shapes of vacant re-
gions, such as voids or cracks, in structural materials. Next, the X-CT 
images are processed by a combination of PH and deep learning. The 3D 
X-CT images are encoded into 2D persistence diagram (PD) via PH 
processing. This PH encoding step is an important innovation of this 
work since the patterns in 3D X-CT images are often too irregular and 
noisy to be directly used as the input of the following machine learning 
process. On the other hand, 2D PDs compressively capture and quantify 
key topological and geometrical features of defects in materials, such as 
their size, shape, density, and distribution. Thus, instead of the raw X-CT 
data, the transformed PDs are used as inputs to the ML process to predict 
failure-related properties, such as local strains or the fracture progress. 

In Fig. 1, among all ML models tested in this work, the deep 

Fig. 1. Scheme of the proposed method. The method accepts X-CT images containing defect information as its sole input and outputs the failure-related properties at 
the time of material examination, such as the local strain for the tensile test and the fracture progress for the fatigue test. 
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multimodal learning (DML) model is representatively schematized due 
to its outstanding performance over benchmark models. Unlike the other 
models, which rely on a single input source, the DML model is multi-
modal and accepts two types of inputs: the PD images themselves and 
PD-extracted metrics. The PD-extracted metrics include the metrics 
extracted from PDs that quantify the void density, intervoid distance, 
and heterogeneity of void distributions. For the DML model to process 
the heterogeneous inputs of image data and value-type data, 

convolutional neural networks (CNNs) and deep neural networks 
(DNNs) are used in parallel. We found that a DML model with two input 
sources considerably outperformed other benchmark models with a 
single input source. The PH and DML processing of the 3D X-CT data is 
our unique approach and key strategy for quantitatively predicting 
failure-related properties at the time of material examination. 

Fig. 2. PH process for measuring void topological features. (a) Scheme describing the PH process and the 0th PD computation. (b) Fifteen exemplary cases with 
different void topologies. The samples in the top row have different void sizes, the samples in the middle row have different intervoid distances, and the samples in 
the bottom row have different distributional heterogeneities. The corresponding birth (b) and lifetime (d-b) histograms are displayed. 
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2.2. Material fabrication 

The low-alloy ferritic steel used in this work is composed as follows: 
(<0.05)C– (<1.7)Mn– (<0.3)Si– (<0.4)(Cr+Mo)– (<0.15)(Ti+Nb+V) 
(wt.%). The steel plate was homogenized at 1200–1250 ◦C for 1 h, hot- 
rolled to 800–850 ◦C, and cooled and coiled at 500–550 ◦C. The final 
thickness of the fabricated plate was 6.5 mm. 

2.3. X-CT measurement and image processing 

An X-ray microscope (ZEISS Xradia 520 Versa) was used. The output 
voltage, power, and step size of the X-CT scanning measurement were 
160 kV, 10 W, and 3 μm, respectively. To obtain 3D binary format im-
ages (voids versus remaining background) from the X-CT data, we used 
an image processing approach, namely, window leveling, as illustrated 
in Supplementary Fig. 2. This approach aims to control the contrast 
within the possible range to remove the background and discern the void 
parts. As a result, the processed X-CT images are converted to 3D binary 
format images B as follows: 

B(u, v) =

{
255, if I(u, v) > α
0, otherwise  

where I(u, v) represents the pixel intensity, u and v are the pixel co-
ordinates, and α is a threshold that is defined as 128 in this study. 

2.4. PH process for quantifying void topology 

Topological data analysis (TDA) is an emerging mathematical tool 
that uses algebraic topology principles to comprehensively measure 
shapes in datasets. TDA has shown promises in various application do-
mains, including materials science, as it detects essential topological 
features embedded in a system by tracking the lifetime of holes in each 
dimension, such as connected components, loops, and voids [40–44]. 
TDA is often narrowly used to describe a particular subfield, namely, PH. 
In this work, PH is used to identify and quantify topological and geo-
metric features in 3D X-CT images [45]. 

We compute the 0th PD via the pH process, and the intuitive idea 
underlying the PH process is illustrated in Fig. 2a. In a schematic 
example where the 3D X-CT scanning data contain multiple voids, the 
data can be mathematically regarded as 3D binary format data with void 
regions versus the remaining background region. The first step in the PH 
process is pixelation, where each pixel in the 3D space is assigned a 
number, such as t0, t1, t2, t3, t4 and so forth (with pixels inside voids 
assigned values of ≤t2 and pixels outside voids assigned values of >t2) to 
be used in the subsequent PD computations. The rule for assigning these 
numbers is known as the Manhattan distance, and the number assigned 
at boundary surfaces (t2 in Fig. 2a) is usually referenced to zero [41,46]. 
The next step is filtration, in which the union of pixels with assigned 
numbers less than a threshold value T is analyzed. When the threshold T 
is increased from t0 to t4, some islands appear (birth) and disappear 
(death), and the event times of these birth and death pairs are encoded in 
the 0th PD. When T equals to t3 or t4, the neighboring islands are 
observed to be in contact and combined into one body, and the smaller 
island is treated as a death. For the example shown in Fig. 2a, the (birth, 
death) pairs of (t0, t3) and (t1, t4) are finally encoded in the 0th PD. 

Fig. 2b illustrates the information stored in the 0th PDs using 15 
exemplary cases with different void topologies. Instead of PD images, we 
introduce birth (b) and lifetime (d-b) histograms, which can be obtained 
from simple reconstructions of the PD results, to more intuitively un-
derstand how different void topologies are reflected in the PD results. If 
the number of voids in a sample is assumed to be constant, the void 
topology can be varied by modifying three features: the void size, 
intervoid distance, and void distributional heterogeneity. The variations 
in each feature are schematized in three rows in Fig. 2b. For the samples 
in the top row, the void topology differs only in terms of the void size, 

with the relative positions and distributions of the voids unchanged. 
Since larger voids appear earlier in the filtration process, peaks in the 
birth (b) histograms are shifted to the left (smaller birth values) for cases 
with larger voids. Next, we compare samples in the middle row of 
Fig. 2b, which exhibit different distributional features, namely, different 
intervoid distances. Since distant void pairs have longer void lifetimes in 
the filtration process, these differences should be reflected in the lifetime 
(d-b) histograms, and peaks in the histograms are shifted to the right 
(larger lifetime values) for distant void pairs. The last feature is the void 
distributional heterogeneity, which is schematized in the bottom row of 
Fig. 2b. The difference in heterogeneity is related to the degree of 
variation in the lifetime (d-b) histograms. Void lifetime values should be 
similar for homogeneous distributions, whereas these values vary sub-
stantially for heterogeneous cases. Overall, the PH processing of the 3D 
X-CT data can extract and quantify key topological features, including 
the void density, void size and some distributional features such as the 
intervoid distance and void heterogeneity. These PH capabilities are 
evaluated using two experimental fracture datasets obtained from 
different mechanical tests: one obtained from tensile tests and the other 
obtained from fatigue tests of metallic materials. 

We used the PH processing API–HomCloud [47] to compute the 0th 

PD for the 3D binary format images. To compute the PD-extracted 
metrics, we first define D, the average intervoid distance, as the geo-
metric mean of the lifetime (d-b) values, which can be calculated as 
follows: 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∏M

i=1
di − bi

M

√
√
√
√ ,

where M is the total number of void pairs, and bi and di refer to the birth 
and death times of the ith void pair. We also define V, the heterogeneity, 
as the degree of lifetime variations, which can be calculated as follows. 

V =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∏M

i=1
|(di − bi) − D|

M

√
√
√
√

2.5. Machine learning training protocol 

For the experimental protocols, the dataset was randomly divided 
into a training set and a testing set with a ratio of 80:20 with no overlap. 
The samples in the training set were further divided for cross-validation 
purposes. The cross-validation protocol was designed as follows: (1) 
randomly shuffle the training set; (2) divide the training into five groups; 
(3) use one group as the validation set and the remaining groups as the 
training set; (4) repeat step (3) every 50 epochs and summarize the 
model evaluation scores. For the testing scheme, the testing set was used 
to evaluate the performance of our models. All network layer configu-
rations are summarized in Supplementary Tables 1 and 2. 

For the DML model, the networks were trained simultaneously. 
During training, we used an Adam optimizer [48] with a learning rate of 
1.0 × 10− 4; the weight decay and momentum of the optimizer were 
defined as 1.0 × 10− 8 and 0.9, respectively. We defined the total loss 
[49,50] (ℓtotal) function as the sum of the cross-entropies of the logit 
vectors, as well as their respective encoded labels, as follows: 

ltotal = l(FC1) + l(FC2),

l(FC∗) = −
∑K

k

∑C

c
Lkclog

[
δ(FC∗)kc

]
,

δ(FC∗)kc =
exp(FC∗)kc

∑C
c exp(FC∗)kc

,

where * denotes the modal inputs (1 refers to PD images and 2 refers to 
PD-extracted metrics), FC is a fully connected layer, L denotes the class 
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labels, K is the number of training samples, C is the number of classes, 
and δ is the output layer, which is implemented with the softmax [51] 
function. For the prediction task, we used the following ℓtotal function: 

ltotal = l(ŷ1) + l(ŷ2)

l(ŷ∗) =
∑n

i=1

(
yi,∗ − ŷi,∗

)2  

where * denotes the modal inputs (1 refers to PD images and 2 refers to 
PD-extracted metrics), ŷ is the predicted value, y denotes the actual 
value, and ℓ(•) is defined as the mean square error loss function. The 
demonstration of the DML model is written in Python and TensorFlow 
toolkit, which is available at https://github.com/tiongleslie/material 
-failure-prediction. 

3. Results 

3.1. Dataset generation from tensile tests 

We generated the fracture datasets used to develop the method 
shown in Fig. 1. Low-alloy ferritic steel, a representative structural 
material, is selected as the test material in this work [52,53]. The 
specimens used for the tensile test are plate-shaped, with a gauge length 
of a 6.4 mm and a thickness of 1.5 mm (inset of Fig. 3a). Tensile tests 
with a strain rate of 10− 3 s− 1 were performed on 15 ferritic steel 

specimens at room temperature. The total elongation when the sample 
broke was 40.7 ±3.7% for these 15 samples, as shown in Fig. 3a and 
Supplementary Fig. 3. The digital image correlation (DIC) technique was 
used to measure the local strains of the samples, as shown in the local 
strain map in Fig. 3b. When a load is applied to a material, it deforms 
unequally, which means that some areas deform more and some areas 
deform less. The central part of the specimen near the fracture point was 
highly strained, exhibiting local strains of 100–130%. As the local strain 
varies substantially at different positions of the specimen, X-CT scanning 
was performed on multiple regions of the specimens (6–8 parts divided 
along the 6 mm length near the fractured surface). 

Note that we recorded the void features from the fractured sample, 
which allows us to obtain a wide range of local strain values and diverse 
void features. Such a wide range can only be obtained for the specimen 
after the UTS point. Supplementary Fig. 4 shows the void features of the 
specimen with the engineering strain value of about 0.1 (corresponding 
to the UTS point). At this strain level, we observed that even the highest 
deformed region of the specimen exhibits little amounts of voids (only 
about 65 mm− 3). This indicates that, at the lower strain level (before the 
UTS point), void appearances were observed as only minimal. It was 
difficult to obtain samples of a wide range of local strain values, and of 
diverse void features, which adequately explains the reason why we 
recorded the void features from X-CT measurement of the fully extended 
and fractured specimen (much after the UTS point). 

Although our specimen in this study was a miniature specimen with 
the gauge length of 6.4 mm, our approach of selecting the X-CT scanning 

Fig. 3. A fracture dataset generated from tensile mechanical testing. (a) A representative engineering stress–strain curve of a test ferritic steel sample. The specimen 
dimensions are shown in the inset. (b) Local strain map and X-CT measurement process. An exemplary local strain map of the fractured sample obtained by the DIC 
technique is shown, with the color bar representing local strain values, as well as the corresponding strain profile. (c) The tensile dataset at a glance. The graph 
displays the local strain (z-axis) as a function of the void density (# mm− 3, log scale) and D (μm). 
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region is similarly applicable to the standard-shaped specimens. Sup-
plementary Fig. 5 compares the DIC results of the miniature specimen 
with the gauge length of 6.4 mm (the original specimen used in this 
study) and the ASTM E8 specimen (a representative standard-shaped 
one). For the former, the X-CT scanning was performed along 6 mm 
near the fractured surface, and the local strain values range between 
0.17 and 1.2. On the other hand, for the latter (ASTM E8) specimen, we 
found a very similar distributions of the local strain values, which range 
between 0.15 to 1.4 along over 6 mm region near the fracture surface. 
Indeed, both specimens have similar distributions in terms of the local 
strain values, which supports that our range selection for the X-CT 
measurements was reasonable. 

A total of 135 data points were collected in the tensile dataset, and 
each data point consists of X-CT images and the corresponding local 
strain value of the X-CT-scanned part of the specimen. Fig. 3c shows an 
overview of the tensile dataset, displaying the local strain of each data 

point as a function of the void density (# mm− 3) and average intervoid 
distance (D). The void density is defined as the number of voids divided 
by the scan volume, and D is defined in the Methods section as the 
geometric mean of the lifetime (d-b) values in the PDs. The whole dataset 
can be roughly classified into regions with low, mid, and high local 
strains. As the strain increases from low to high, the void density tends to 
decrease, whereas D tends to increase. This tendency is visually 
confirmed in the internal void views revealed by X-CT scanning, where 
the voids decrease in number and increase in size, resulting in a larger 
value of D for high strain cases. The observed evolution of the void to-
pology can be adequately explained by the void coalescence phenome-
non, which is known to occur in ductile alloys under accumulated plastic 
deformations [54,55]. 

While Fig. 3c displays the overall dataset, Fig. 4 focuses on a specific 
specimen as an example for a more detailed PH analysis. A fractured 
ferritic steel sample is divided into four parts for the X-CT measurements 

Fig. 4. PH analysis for a ferrite specimen fractured during tensile mechanical testing. (a) 3D structural view of fractured ferrite samples. The DIC result, X-CT 
overview, and internal void view are shown. (b) The 0th PDs of parts 1–4. (c) Birth (b) histograms. The left and right y-axes show the density of small voids (≤3 μm) 
and larger voids (>3 μm), respectively. (d) Lifetime (d–b) histograms. The number of void pairs shown on the y-axis is normalized by the scanning volume. 
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(parts 1–4), with part 4 located nearest to the fractured surface. Each 
part is represented by different local strain values, namely, 0.17 (part 1), 
0.23 (part 2), 0.40 (part 3), and 0.82 (part 4). In Fig. 4b, the 0th PDs for 
parts 1–4 are computed via the PH process introduced in Fig. 2a. These 
PDs are noticeably different from one another. In particular, as the local 
strain increases, the dot colors inside the red highlighted circles in 
Fig. 4b gradually change from red to purple, indicating that the density 
of the small voids (≤3 μm) substantially decreases. 

In Fig. 4c and d, to more intuitively understand the quantitative 
difference in the void topology, birth (b) histograms and lifetime (d-b) 
histograms are built based on the PDs shown in Fig. 4b. Since the birth 
values are directly related to the void size (in this case, size ≈ -3 × b μm 
because the unit length for each pixel in the pH process is 3 μm), the 
birth histogram summarizes the void size and density statistics. As the 
local strain increases (part 1 → part 4), the density of smaller voids (≤3 
μm) rapidly decreases (8638 → 6047 → 2634 → 304 mm− 3), whereas 
that of larger voids (3–21 μm) increases. This trend is consistent with the 
void coalescence phenomenon, in which small voids are combined into 
larger voids under heavy loads. Next, as the lifetime value represents the 
distance between neighboring voids (in this case, intervoid distance ≈ 3 
× (d–b) μm), the lifetime histogram presents the statistics of the void 
distributional features. D, which is defined as the geometric average 
intervoid distance, increases as the local strain increases (D = 16.9 → 
18.0 → 23.0 → 32.8 μm). Additionally, we introduce the void hetero-
geneity (V), which is defined as the degree of variation in the lifetime 
histograms. The equations for D and V are provided in the Methods 

section. V also increases (V = 3.8 → 4.7 → 5.6 → 10.7 μm) with 
increasing local strain. This PH analysis of the void topology of a ferrite 
specimen reveals that our method can quantify key void information 
such as size, density, and distributional features of intervoid distance 
and heterogeneity; thus, PD images and PD-extracted metrics (D and V) 
are suitable inputs for the subsequent ML studies. 

3.2. Machine learning tensile dataset 

We performed ML experiments with the tensile dataset to classify or 
predict local strains based on the pH results. Five ML models (Models 
I–V) are schematized in Fig. 5a. Although these models all output the 
local strain of the tested sample, the ML algorithms, architectures, and 
inputs all differ. The ML algorithms include multivariable linear 
regression [56] (MLR), DNN [57], and CNN [58]. In terms of input types, 
Model II differs from the other four models: Model II uses the raw X-CT 
images as inputs, whereas Models I, III, IV, and V use the PH results (PD 
images or PD-extracted metrics) as inputs. Here, the PD-extracted met-
rics include the following five metrics: void density (for void size ≤3 
μm), void density (for void size of 3–6 μm), void density (for void size 
>6 μm), D, and V. The void density is categorized into three classes 
based on the results of Fig. 4c, where the tendency of void density of 
small (≤3 μm) and larger (3–6 μm or >6 μm) voids differed with local 
strain variations. For the MLR or DNN cases (Models I and III), 
PD-extracted metrics are used as inputs, while the CNN model (Model 
IV) uses the PD images as inputs since the CNN is a specialized algorithm 

Fig. 5. ML results using the tensile dataset. (a) Schematics of the ML architecture and input types for Models I–V. (b) Top-k accuracies for the classifications of local 
strains. (c-g) Graphs comparing the local strains from experiments and ML predictions for Models I–V. 
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for processing images. For the DML model (Model V), Models III and IV 
are combined in parallel to utilize both PD images and PD-extracted 
metrics as inputs. The details of the network configurations are pro-
vided in Supplementary Tables 1 and 2. 

First, ML classification tasks are performed using the tensile dataset. 
The local strain values range between 0.10–1.30 and can be categorized 
into five classes with 0.15 intervals: class #1: 0.10–0.25, class #2: 
0.25–0.40, class #3: 0.40–0.55, class #4: 0.55–0.70, and class #5: 
≥0.70. The accuracy results of the top-k classifications for Models I–V 

are summarized in Fig. 5b. The top-k accuracy refers to the percentage of 
cases in which the correct class label appears among the top-k proba-
bilities. Model V (DML model) showed an excellent performance, with a 
top-1 classification accuracy of 84.6% and 100% top-k (k ≥ 2) accu-
racies. Model IV (CNN model based on PD images) also achieved a high 
top-1 accuracy of 80.8%. On the other hand, Models I and III, which are 
based on PD-extracted metrics, considerably underperformed, exhibit-
ing accuracies of less than 75%. Model II, which is based on raw X-CT 
images, was inefficient, with a top-1 classification accuracy of only 31%. 

Fig. 6. Application of the developed method to the fatigue fracture dataset. (a) Scheme of data collection from fatigue tests. The X-CT data were obtained discretely 
at cycles of 103.0, 103.5, 104.0, and 104.5 and so forth until the specimen fails. (b) The fatigue dataset with X-CT images. The graph shows the fracture progress (N/Nf 
on the z-axis) as a function of the void density (# mm− 3, log scale) and D (μm). (c) The 0th PDs for representative samples with low, mid, and high progress. (d) Birth 
(b) histograms. (e) Lifetime (d–b) histograms. (f) Top-k accuracies for the classification of the fracture progress. (g–k) Graphs comparing fracture progress from 
experiments and ML predictions for Models I–V. 
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The very low performance of Model II, which does not use any PH-based 
inputs, demonstrates the effectiveness and necessity of PH-based 
encoding of noisy X-CT images. 

Next, for the prediction tasks, all models are trained to predict, not 
classify, local strain values. The MAE is used to evaluate the prediction 
performance. Similar to the classification results, as shown in Fig. 5c–g, 
Model V (DML model) achieved the best MAE of 0.09. Model III achieved 
the second-lowest MAE of 0.12, and Models I and IV achieved MAEs of 
0.42 and 0.33, respectively. Model II, which used raw X-CT images as 
inputs, performs the worst, exhibiting an MAE of 0.55, similar to the 
classification results, indicating that PH-based encoding is a necessary 
step to achieve high prediction performance. 

Since Model V (our DML model) performs the best in both the clas-
sification and prediction tasks, it is worth investigating the reasons for 
these improvements. Model V includes two networks to exploit the 
different features of PD images and PD-extracted metrics. The two modal 
networks are based on a CNN and DNN; the former focuses on learning 
the features in the PD image, while the latter is trained on the PD- 
extracted metrics. The DML model simultaneously accepts and pro-
cesses these different and complementary inputs and generates a joint 
feature representation to strengthen the feature activations of the 
network. This multimodal architecture is more effective at learning 
complex features than models that rely on a single input source. 

3.3. Application to fatigue dataset 

Figs. 3–5 show that the developed method is effective at classifying 
and predicting local strains using the tensile dataset. Our method was 
also applied to another fracture dataset, namely, the fatigue dataset, to 
predict fracture progressions. In real application environments, failure- 
induced accidents occur unexpectedly through fatigue mechanisms; 
thus, an expansion to a fatigue-driven fracture dataset is necessary for 
the method to be used as a practical and universal tool. The low-alloy 
ferritic steel was also used in the fatigue testing, and the specimens 
were plate-shaped, with a 3 mm gauge width and a 1.5 mm thickness. 
The detailed dimensions of the fatigue testing specimens are illustrated 
in Supplementary Fig 6. To induce void-driven fatigue fractures, the 
original ferrite specimens were intentionally prestrained with 10% 
tensile deformations before fatigue testing, causing small homogeneous 
voids to form within the specimens [59]. A fatigue uniaxial load was 
applied with a maximum stress of 700 MPa, an R-ratio of 0.1, and a 
frequency of 10 Hz. Fig. 6a illustrates the process of collecting the fa-
tigue datasets. The fatigue tests were interrupted at cycles of 10n (n =
3.0, 3.5, 4.0, 4.5 and so forth) until the failure point for the X-CT mea-
surements. The fracture progress of each specimen was then determined 
by dividing the interrupted cycle number (N) by the fatigue life cycle 
(Nf) of that specimen. For the exemplary case shown in Fig. 6a, the 
specimen was interrupted four times before it failed, at progresses of 9%, 
28%, 88%, and 97%, and the defect topology evolutions in the gauge 
region of the specimens were obtained by X-CT scanning. 

The fatigue dataset includes a total of 100 data points, and each data 
point is composed of X-CT images and the corresponding fracture 
progress. Fig. 6b illustrates the whole fatigue dataset in terms of the 
fracture progress (N/Nf), void density, and D. The data distribution can 
be classified into three categories, with low, mid, and high fracture 
progress. As the fracture progress increases from low to high, the void 
density tends to increase, resulting in a decrease in D. This tendency can 
be visually confirmed with the internal void views shown in Fig. 6b, and 
this tendency is a discriminative feature of ML studies, likely leading to a 
high prediction accuracy. Fig. 6c–e illustrate the 0th PD images and 
corresponding birth and lifetime histograms for representative samples 
with low, mid, and high fracture progress. These PD images differ 
mainly in the birth value range of − 6 to − 2, which indicates the 
appearance of larger voids (3–15 μm) in samples with higher progress. 
Quantitatively, in the birth histograms (Fig. 6d), as the progress in-
creases, the density of small voids (≤3 μm) increases (877 → 3311 → 

4826 mm− 3), while larger voids (3–15 μm) with densities of more than a 
few tens mm− 3 typically form when the progress exceeds 90%. In terms 
of the distributional features stored in lifetime histograms (Fig. 6e), as 
the progress increases, D and V both decrease, with values of 40.1 → 
27.3 → 18.3 μm and 8.6 → 6.6 → 6.0 μm, respectively. These results are 
consistent because an increase in the void number should cause the 
voids to be distributed in a closer and more homogeneous manner. These 
various PD features, including D and V, can discriminate samples with 
different fracture progresses and can thus be used as inputs in ML 
studies. 

This trend in void features was observed quite universal for different 
batches of the same material from the same manufacturer. Supplemen-
tary Fig. 7 compares the void features including void size, density, and 
distribution information of several samples for very similar fracture 
progresses from two different batches (namely, batches A and B): 25% of 
the batch A vs. 28% of the batch B; 79% of the batch A vs. 88% of the 
batch B; and 97% of the batch A vs. 97% of the batch B. Supplementary 
Fig. 7 shows that void features were found very similar for three com-
parison cases from the batches A and B, which supports the very high 
similarity of void features. Thus, our method should work well even for 
the different batches of the same material from the same manufacturer. 

ML experiments were carried out on the fatigue datasets to classify or 
predict the fracture progress. Models I–V, which are shown in Fig. 5, 
were also tested using the fatigue dataset. First, ML classification tasks 
were performed. The progress values can be categorized into the 
following four classes: class #1: ≤0.2, class #2: 0.2–0.5, class #3: 
0.5–0.9, and class #4: 0.9–1.0. Note that the intervals between the four 
classes are not identical; instead, the intervals were adjusted to ensure 
that the amount of data in each category is similar. A uniform data 
distribution over all classes is necessary for unbiased ML predictions, 
particularly when the amount of data is small. The top-k classification 
accuracy results for Models I–V are summarized in Fig. 6f. Similar to the 
tensile case, Model V (DML model) performs the best, with top-1 and 
top-2 classification accuracies of 82.8% and 95.7%, respectively. Model 
IV (CNN model based on PD images) achieved the second-best perfor-
mance, with for top-1 and top-2 accuracies of 79.3% and 92.4%, 
respectively. Models I and III, which are based on only PD-extracted 
metrics (no PD images), underperform, achieving top-1 classification 
accuracies of less than 70%. Model II, which utilizes raw X-CT images as 
its sole input source (no PH-based inputs), exhibits the worst top-1 ac-
curacy of only 33%, indicating that ML training based on only raw X-CT 
data is not successful. Comparisons between Model II and the other 
models show that the PH process is an effective approach in machine 
learning for handling complex and noisy X-CT image data. 

Next, for the prediction tasks, Models I–V are used to predict the 
fracture progress. Figs. 6g-6k show that, similar to the classification 
results, Model V (DML model) achieved the best MAE of 0.14, and Model 
IV achieved the second-best MAE of 0.18. Models I and III, which use PD- 
extracted metrics as inputs, showed worse MAEs of 0.35 and 0.25, 
respectively, indicating that PD-extracted metrics alone cannot suffi-
ciently capture the essential void-related information required for ML 
training. Unsurprisingly, Model II, which does not use any PH-based 
inputs, exhibited the poorest MAE of 0.57, again supporting the diffi-
culty of training with raw X-CT images. The performance enhancement 
of our DML model (Model V) over other benchmark models appears to 
be universal in both the tensile and fatigue datasets. Unlike most other 
ML models, which rely on single input sources, our DML model benefits 
from exploiting discriminatory features from two input sources, namely, 
PD images and PD-extracted metrics. 

3.4. OSA analysis 

Thus far, we confirmed that the combined PH and DL models pro-
vides the high prediction performances for failure progressions, and 
embodies the associated failure characteristics. Yet, it was not suffi-
ciently understood which factors regarding the void topology play a 
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prior role for the reliable property predictions. In this regard, in Fig. 7, 
an occlusion sensitivity analysis (OSA) was performed for Models III and 
IV and for the tensile and fatigue datasets. OSA is used to quantify the 
importance of each input feature and can thereby identify key compo-
nents learned by the models. Here, an occlusion process refers to 
partially hiding a specific feature of the input data, and the change in 
classification accuracy due to the occlusion is evaluated. This analysis 
reveals the sensitivity of output predictions to occluded input data. 

The OSA results for Model IV (CNN based on PD images) and Model 
III (DNN based on PD-extracted metrics) are illustrated in Fig. 7a and b, 
respectively. For Model IV, the occlusion hides a specific location in the 
PD images, and the accuracy change due to each occlusion part was 
computed. Regions corresponding to the cluster of small voids (marked 
in black) were identified as highly sensitive spots, with occlusions 
causing an accuracy degradation of 15–35% for both the tensile and 
fatigue datasets. These results are consistent with previous observations 
that the void density of small voids (≤3 µm) is substantially affected by 
local strains (tensile) and fracture progress (fatigue), indicating that the 
development of small voids is a key learning feature. The OSA result for 
Model III in Fig. 7b reveals additional information. Unlike the CNN case, 
the occlusion in the DNN model involves changing a specific input data 
feature to a value of zero, and the effects of these occlusions on the 
output predictions were quantified. This test revealed that the density of 
small voids (≤3 um) and D are both critical learning features. The pri-
ority of these two features (void density for voids ≤3 µm and D) is 
reversed depending on the dataset used: the void density (≤3 um) is 
more important for the tensile dataset, while D is more important for the 
fatigue dataset. 

4. Discussion 

We describe the advantages and limitation of our method, compared 
to the existing methods which are mainly based on FEM or CPFEM ap-
proaches. These previous models were limited in reflecting the statistical 
information of real defects, such as the evolution of their fraction, size, 
and distributions at each failure progression, mainly due to prohibitive 
computational cost. On the other hand, our method is a data-driven 
approach (deep learning model) and thus is free from the time scale, 
as long as the dataset is prepared in a sufficient amount. Thus, our deep 

learning-based method can easily predict failure properties over a wide 
range of time scales (for example, predictions from 0 to 100% fracture 
progress). Another benefit of our method is that it is fed with the X-CT 
image as its only input at the time of the material examination (real-time 
measurement). This enables the full reflection of the damage accumu-
lated in a material until the time of its examination. Such real-time 
reflection of external factors is difficult for the FEM-based approach 
where the loading and environmental factors are typically given as 
initial inputs. 

On the other hand, the limitation of our method is that the perfor-
mance strongly depends on the dataset preparation. The property pre-
dictions cannot be accurate when the actual loading situation was not 
trained. In reality, the material is subject to various environmental 
loading conditions. In this work, our datasets were designed in fully 
controlled environments, with uniaxial tensile and fatigue tests con-
ducted at room temperature. Thus, the developed tool may perform 
poorly in uncontrolled situations due to large differences with the 
training data. To overcome this limitation, datasets need to be con-
structed in more diverse experimental environments, in which the strain 
rates, fatigue modes, stress amplitudes, R-ratios, and temperatures can 
be crucial parameters. 

In principle, if we want to apply our method to different types of 
materials, a completely new dataset based on the specific material need 
to be constructed for new ML training and tests. Nonetheless, to un-
derstand if our method would be useful for other ferritic steel materials 
possessing similar compositions and mechanical properties, we per-
formed additional ML prediction studies using a different type of low- 
alloyed ferritic steel. Note that this new tested specimen has very 
similar elemental compositions (also follow in range (<0.05)C–(<1.7) 
Mn– (<0.3)Si–(<0.4)(Cr+Mo)–(<0.15)(Ti+Nb+V) wt.%), but different 
manufacturing processes (;higher extraction temperature, start rolling 
temperature, finish delivery temperature, reduction ratio; and lower 
coiling temperature) from the previously used one, and 11 samples 
which were not parts of our training set were used for ML tests. Our DML 
model achieved 72.7% for the classification task, and the MAE of the 
prediction task was found as 0.16. Overall, the accuracy of our DML 
model slightly dropped, however, the model still maintains its high 
performance compared to the reference models such as CNN and DNN. 
The high prediction and classification accuracy observed for the new 

Fig. 7. OSA results. (a) Scheme illustrating the OSA process for Model IV (CNN based on PD images) and the corresponding accuracy changes with occlusions. (b) 
Scheme describing the OSA process for Model III (DNN based on PD-extracted metrics) and the corresponding accuracy changes with occlusions. 
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testing materials supports that our model can be well expanded to other 
ferritic steel materials with similar compositions, and indicates that the 
internal voids dictate the fracture properties for these materials. 

We would like to clarify the capability of our developed method, in 
terms of what can be chosen as output properties. Our method is fed with 
the input of X-CT images of a deformed material, and outputs some 
mechanical properties at the specific and corresponding deformation 
level. Thus, these output properties should be the properties that are 
affected by the deformation level, which for example includes the local 
strain (from tensile tests) and fracture progress (from fatigue tests). On 
the other hand, our method is not suitable for predicting the engineering 
properties that are intrinsic to a given material, such as elastic modulus, 
yield stress/strain, and ultimate stress/strain. These mechanical prop-
erties are intrinsic properties for a given material, rather than properties 
being varied by the deformation level. 

In addition to X-rays, our method can be applied to other types of 
nondestructive scanning tests, such as ultrasonic imaging measure-
ments. Although we selected X-ray scans to obtain high-resolution 
characterizations of defects, X-ray scanning often investigates local-
ized areas due to limited permeability issues in highly dense metal 
systems such as steels. On the other hand, ultrasonic testing offers the 
benefits of scanning wider and deeper areas and is thus considered a 
more suitable choice in industrial situations, despite its comparatively 
lower resolution. In fact, ultrasonic-based scanning, such as phased 
array ultrasonic testing (PAUT), is the most commonly used nonde-
structive scanning method in industry. Thus, our method should be 
expanded to fracture datasets obtained by PAUT for practical use. 

5. Conclusions 

In summary, we report a novel method based on a combination of X- 
CT, PH, and deep learning, which enables the reliable predictions of 
failure-related properties at the time of material’s nondestructive ex-
amination. Since the method exploits the microstructural defect state 
obtained by the X-CT scanning as its input, it fully reflects the damaging 
factors accumulated in the material by the time of examination. Using 
both tensile and fatigue fracture datasets of low-alloy ferritic steel, the 
method achieves small MAEs of 0.09 and 0.14 in predicting the local 
strain and the fracture progress, respectively. These high accuracies are 
due to both PH-based encoding and multimodal learning, where noisy 
3D X-CT images were transformed into 2D PDs that preserve key topo-
logical features such as the internal void size, density, and distribution. 
The combined PH and DML processing of 3D X-CT data is our unique 
computational approach enabling the failure predictions based on void 
topology progressions, and can be universally used for various me-
chanical datasets where void topology plays vital roles. 
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