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electrochemical CO2 conversion
literature reveals research trends and directions†
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Large-scale and openly available material science databases are mainly composed of computer simulation

results rather than experimental data. Some examples include the Materials Project, Open Quantum

Materials Database, and Open Catalyst 2022. Unfortunately, building large-scale experimental databases

remains challenging due to the difficulties in consolidating locally distributed datasets. In this work,

focusing on the catalysis literature of CO2 reduction reactions (CO2RRs), we present a machine learning

(ML)-based protocol for selecting highly relevant papers and extracting important experimental data.

First, we report a document embedding method (Doc2Vec) for collecting papers of greatest relevance to

the specific target domain, which yielded 3154 CO2RR-related papers from six publishers. Next, we

developed named entity recognition (NER) models to extract twelve entities related to material names

(catalyst, electrolyte, etc.) and catalytic performance (Faradaic efficiency, current density, etc.). Among

several tested models, the MatBERT-based approach achieved the highest accuracy, with an average F1-

score of 90.4% and an F1-score of 95.2% in a boundary relaxation evaluation scheme. The accurate and

accelerated NER-based data extraction from a large volume of catalysis literature enables temporal trend

analyses of the CO2RR catalysts, products, and performances, revealing the potentially effective material

space in CO2RRs. While this work demonstrates the effectiveness of our ML-based text mining methods

for specifically CO2RR literature, the methods and approach are applicable to and may be used to

accelerate the development of other catalytic chemical reactions.
Introduction

A large amount of material science data has been accumulated
worldwide.1 As a result, machine learning has recently emerged
as a powerful tool to solve materials science problems.2

However, the large-scale and openly available materials science
databases primarily include results from computer simulations
rather than experimental data. Some exemplary databases
include the Materials Project,3 Open Quantum Materials Data-
base (OQMD),4 Novel Materials Discovery (NOMAD),5 and Open
Catalyst 2022 (OC22).3,6 Typically, experiments are performed
locally in each laboratory, and these widely distributed results
are extremely difficult to collect in a single database. In this
regard, the scientic literature can be a great source of focus
orea Institute of Science and Technology,
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ineering Korea University, Seoul 02841,

ore National Laboratory, Livermore, CA,

tion (ESI) available. See DOI:

of Chemistry 2023
since the literature contains a large amount of high-quality
experimental data as a result of the peer review processes.
Extracting key information from the literature is considered an
excellent approach to construct large-scale experimental mate-
rial databases and requires diverse natural language processing
techniques.

Manually text mining literature is very time-consuming, and
thus, automated processes for text mining, such as rule-based
or machine learning-based approaches, are highly desirable.
In particular, named entity recognition (NER)7 is the most
frequently used method for recognizing and extracting entities
such as words or phrases in papers by classifying them
according to predened labels. The extracted entities from each
paper could be stored as specic data, such as material's name
and performance value. In contrasts, when using conventional
analysis tools from literature databases including Web of Sci-
ence8or Scopus,9 we can only analyze and extract the predened
keywords or topics, resulting in the loss of detailed information
within the literature. To extract the detailed information from
literature, NER plays a critical role in automated text mining.
NER has recently been used in materials science10–15 and
biomedical research16–18 to extract the properties of materials or
chemicals from texts. For example, Weston et al.12 successfully
J. Mater. Chem. A
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extracted general materials science entities, such as material
names, phase names, and synthesis or characterization
methods, by applying a long short-term memory (LSTM)-based
NER model19 to abstracts of 3.3 million materials science
papers. Similarly, Park et al.11 explored the literature on metal–
organic frameworks (MOFs) and extracted entities such as MOF
names and synthetic routes and conditions from 30 k papers.
More recently, transformer-based models, such as bidirectional
encoder representations from transformers (BERT), have been
actively used in natural language processing (NLP) tasks due to
their enhanced accuracies.20–22 Notably, Trewartha et al.21

developed MatBERT and compared the entity extraction
performance of several BERT models, including BERT (ref. 20)
and SciBERT,23 and found that the models' performances are
highly affected by the training domain.

Despite previous efforts, performing text mining for
a specic target domain24 like catalysis remains difficult. One
difficulty is selectively collecting papers of greatest relevance to
the specic target domain. Previous reports considered general
materials science papers, and in those cases, collecting papers
is straightforward since selection processes are not needed.
However, if a user wants to perform text mining on, for example,
the domain of electrochemical CO2 reduction reactions
(CO2RRs), an automated and efficient selection process is
necessary. Another difficulty is the development and applica-
tion of NER models. Material names (catalysts, products) are
multi-word entities involving sometimes even more than ten
words, which is much larger than other types of labels such as
performance values. For instance, in an article by Wang et al.,25

a complex catalyst was used consisting of Ni nanoparticles (NPs)
encapsulated in nitrogen-doped carbon nanotubes (CNTs) and
assembled on the surface of graphene; this catalyst is abbrevi-
ated in its original text as “N/NiNPs@CNT/G”. In this case, the
evaluation of NER is challenging since multi-words entities are
not only more difficult to identify but also frequently lack
consensus on the entity's exact beginning and end. Moreover,
entity annotations need to be performed very carefully to ach-
ieve high NER performance.24 The catalyst names appearing in
CO2RR papers are not standardized and oen include supports
or structures in the catalyst name, as exemplied above. Thus,
dening clear annotation rules, like which words should be
annotated as catalyst materials, is important. For instance, in
an article by Zhu et al.,26 the authors compare the performance
of copper catalysts having varied structures. Usually in NER
tasks, catalysts are identied by solely their chemical compo-
sition (i.e., “copper”), but in this case, annotating both the
chemical and structural words as the catalyst name is critical
(i.e., “copper hollow ber”, “copper foam”, “copper foil”). Since
entity characteristics differ in various target application
domains, pretrained NER models from prior studies are oen
not applicable out-of-the-box to a new domain. These problems
call for the development of NER models that are specic to
different target domains, which in our case is electrochemical
CO2RR.

In this work, machine learning (ML)-based text mining
methods are presented and demonstrated to be effective for the
electrochemical CO2RR target domain. First, we report
J. Mater. Chem. A
a method for selectively collecting papers pertinent to this
specic domain and excluding irrelevant papers using
a combination of Doc2Vec (ref. 27) and latent Dirichlet alloca-
tion (LDA)28 algorithms. Next, NER models based on bidirec-
tional LSTM (Bi-LSTM)19 and BERT (ref. 20) algorithms are
retrained using 500 manually annotated CO2RR papers to
extract key entities related to catalysis, such as material names
and catalytic performance data. The MatBERT-based model
shows the best performance, exhibiting an F1-score of 90.4%
that reached up to 95.2% in a boundary relaxation29 evaluation
scheme owing to the accuracy enhancements30,31 for multiword
entities, such as catalyst and electrolyte names. The catalysis-
specic NER model enables accelerated data extraction from
a large volume of literature (in our case, 3154 CO2RR papers),
thereby allowing yearly trend analyses of the CO2RR catalysts,
products, and performance. This analysis reveals the recent
element usage trends, including the boost of post-transition
metal elements of Bi and In for formic acid production. Addi-
tionally, it also proposes the potentially effective material space
in CO2RRs, such as transition metal elements of Cr, Mn and Mo
for single atom catalysts. To the best of our knowledge, this
work is the rst study reporting ML-based text mining for
catalysis literature, and the proposed approach will be useful for
other catalytic reactions in addition to CO2RRs.
Results and discussion
Workow of CO2RR literature processing

Fig. 1 presents the four sequential steps in the CO2RR literature
processing workow developed in this paper, including (1)
paper collection and preprocessing, (2) exclusion of irrelevant
papers, (3) data extraction using named entity recognition
(NER), and (4) analysis of research trends and directions. In step
(1), a total of 4838 CO2RR-related papers were collected with the
permissions based on keyword queries from the websites of six
publishers. These papers were parsed into plain text and toke-
nized using ChemDataExtractor32 for the subsequent text
mining processes. Since the keyword query-based search in step
(1) still yielded some “noise papers” irrelevant to CO2RR, in step
(2), these noise papers were ltered out using our combined
approach of Doc2Vec and latent Dirichlet allocation (LDA),
nally leaving the most relevant 3153 papers. In step (3), entity
labeling and NER were performed. Twelve types of entities,
including material names and electrochemical properties, were
manually labeled. Examples of these twelve types of entities are
provided in Table S1.† Using the labeled dataset, different NER
models, including Bi-LSTM and BERT-based models, were
developed. Finally, in step (4), the best NER model (MatBERT-
based21 approach) was applied to all 3153 papers to generate
a large database. This database was analyzed to assess useful
and recent research trends and directions in the CO2RR eld.
More detailed results from each step are explained below.
Preparation of electrochemical CO2RR papers

Our rst approach to acquire the CO2RR papers involves
a keyword query-based search to collect papers from journal
This journal is © The Royal Society of Chemistry 2023

https://doi.org/10.1039/d3ta02780e


Fig. 1 Workflow of CO2RR literature processing. The following steps are crucial in the workflow: (1) papers are collected and then parsed in text
format, and the text is tokenized for the training dataset. (2) Doc2Vec and LDA algorithms are applied to remove irrelevant papers. (3) Twelve
types of entities are manually labeled, and the labeled training dataset is used to train two types of NER models. (4) The material names and
catalyst performance are extracted based on the collected papers, and research trends and directions are analyzed.
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websites (Fig. 2a). Journals were considered from the following
six publishers: Springer Nature, Elsevier, Wiley, American
Association for the Advancement of Science (AAAS), American
Chemical Society (ACS), and Royal Society of Chemistry (RSC).
Only research articles were collected; any papers categorized as
reviews, perspectives, and news were excluded. To select papers
relevant to CO2 electroreduction catalysis, we considered many
versions of keyword queries in the Boolean search and found
the best search to be “CO2” AND “reduction” AND “reaction”
AND “catalyst” AND “faradaic” AND (“electrochemical” OR
“electroreduction” OR “electrocatalytic” OR “electro”). This
search process resulted in a total of 4838 papers.

Unfortunately, the keyword query-based search does not
provide fully satisfactory screening results. A substantial
number of irrelevant or “noise papers” were found, examples of
which include photochemical CO2RR papers, oxygen reduction
reaction papers, and nitrogen reduction reaction papers. To
lter out these irrelevant papers, we report a combined
approach involving Doc2Vec and LDA methods. Doc2Vec is an
algorithm that converts a document into a vector (the document
version of Word2Vec33,34). We manually selected 20 seed papers
that best represent our target topic of electrochemical CO2RR.
Then, 200-dimensional document embedding using Doc2Vec
are used a cosine similarity calculation and we compute the
difference between our seed papers and the remaining papers
in our collection. Fig. 2b visualizes the document embedding
results for all 4838 papers including the 20 seed papers which
were reduced to two dimensions using principal component
analysis (PCA) algorithms, and the maximum cosine similarity
between an arbitrary paper and 20 seed papers was used as
a screening metric. We chose to exclude the papers that differed
the most from the seed papers.
This journal is © The Royal Society of Chemistry 2023
To determine whether the Doc2Vec strategy was effective
for removing irrelevant papers, topic modeling through latent
Dirichlet allocation (LDA) was applied. LDA assigns the
probabilities of several topics for each paper based on the
words describing the topic. An appropriate number of topics
must be selected, which is a hyperparameter of LDA. Based on
the complexity28 and coherence35 of the LDA approach, the
optimal number of topics was determined to be 11. Table S2†
provides the detailed contents of the LDA topics. Several
topics were identied as completely irrelevant to CO2RR and
thus grouped as noise. We further classied the eleven topics
into four categories, which were entitled: CO2RR, density
functional theory (DFT), analysis, and noise. In general,
catalyst papers oen contain a characterization part that
analyzes the structure and properties of a catalyst and a part
that identies the mechanism of the catalytic reaction using
DFT simulations. Thus, we reected these attributes in the
nal four categories. Fig. 2c shows the ratio of noise papers as
a function of the Doc2Vec similarity. For 500 papers with the
highest Doc2Vec similarity (>0.55), only 16% were identied
as noise papers. On the other hand, for 500 papers with low
Doc2Vec similarity (<0.35), approximately 70% were identi-
ed as noise papers. This comparison reveals the effective-
ness of the Doc2Vec approach in ltering out irrelevant
papers. The threshold for the Doc2Vec similarity was set as
0.4 in this work. The resulting process removed an additional
1683 papers, nally leaving 3153 papers in our corpus. The
combined approach of Doc2Vec and LDA is useful for
screening papers that are outside of the research target topic.
This method requires the input of only tens of seed papers
from a user, and thus can universally be applied to other
research domains beyond CO2RR with ease.
J. Mater. Chem. A
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Fig. 2 Preparation of electrochemical CO2RR papers. (a) Scheme to collect only experimental CO2RR research articles, which is composed of
four steps (red text). (b) Paper embeddings made by Doc2Vec and visualized with principal component analysis (PCA). The similarity calculation
between random papers and seed papers using the cosine similarity method is highlighted. (c) The cumulative number of papers and ratio of
noise papers according to the cosine similarity are shown as bar and line graphs, respectively. A cosine similarity of 0.4 is chosen as a criterion for
filtering out noise papers. The 11 topics obtained as a result of LDA were classified into 4 categories (DFT, analysis, noise, and CO2RR). The pie
charts show the results of applying the LDA analysis to the top 500 and bottom 500 papers in the corpus.
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Data extraction using NER

We applied the NER approach to only the abstracts of papers
rather than the full document text because we assume that the
abstract contains the most important information in the paper
and the limited scope of text simplies the NER task (Table S3 in
the ESI†). As shown in Fig. S1,† analyses of 100 randomly selected
papers conrmed that the information about catalyst names and
product names in the main bodies was also present as much as
98% of the abstracts. Also, we found that the information
regarding performance (faradaic efficiency, current density, onset
potential, overpotential, stability hour, and turnover frequency)
was present more than 76% of the abstracts. These analyses
support that the abstracts contain the most important informa-
tion in papers, and justify the approach of prioritizing abstracts in
the current study. For the NER task, we selected the following
twelve entities that contain key information for CO2RR: catalyst,
product, electrolyte, reference electrode, current density, faradaic
efficiency, stability hour, turnover frequency, overpotential, onset
J. Mater. Chem. A
potential, potential, and concentration. Note that the rst four
entities contain material information, whereas the remaining
eight entities are related to the electrochemical catalytic perfor-
mance. Entities of material names are composed of chemical
elements, while entities of electrochemical measurements are
mainly composed of numbers and units. Several examples of each
entity are provided in Table S4.† These entities were manually
annotated based on only the abstracts of the top 500 papers with
high Doc2Vec similarity (Fig. 2c). The inside-outside-beginning-
end-single (IOBES) format, which is known to be effective in
addressing multiword entities,36,37 was adopted for the annotation
process. Several annotation formats, including IOB, IOBE, and
IOBES, were considered, and IOBES generally produced the best
NER performance (Table S4 in the ESI†).

Two types of NER models were developed, Bi-LSTM and
BERT-based models, and their network architectures are shown
in Fig. 3. The LSTM model was designed to solve the long-term
dependency problem of recurrent neural networks (RNNs),
This journal is © The Royal Society of Chemistry 2023
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which show poor performance for long sequences.38 Word
embedding and character-level representations39 were both
applied in the Bi-LSTM models. Word embedding was per-
formed by training the Word2Vec algorithm34 based on our own
corpus of catalysis papers. The character-level representations
were obtained from the output of the character-level Bi-LSTM
training based on the same corpus. The character-level repre-
sentations reect words such as plurals or molecular formulae.
These two embedding vectors were concatenated and used as
inputs to the Bi-LSTM model.

On the other hand, BERT is a transformer-basedmodel20 that
is known to understand the entire context considerably better
than Bi-LSTM models due to self-attention.40 Self-attention
Fig. 3 Structures of the NERmodels. NER consists of three steps as follow
to the model. (2) Two types of NER models were used. In the Bi-LSTM C
level representations and passed to the Bi-LSTM and CRF layers. In th
embeddings. Both models return sequences of entities in IOBES format. (
the catalysts, faradaic efficiency, and products.

This journal is © The Royal Society of Chemistry 2023
mechanisms obtain contextual information by calculating the
correlations between all words in the input text. It is very
important to note that in contrast to the embeddings used in Bi-
LSTM models, contextualized word embeddings are used in the
BERT model, which means that the same words can be
embedded differently depending on the context. Several general
and domain-specic BERT models have been reported,
including BERT_base,20 SciBERT,23 MatSciBERT,41 MatBERT,21

BioBERT,42 and FinBERT,43 although a catalysis-specic version
has not yet been devised. Since none of these previous models
can be directly implemented to address catalysis papers, we
considered four pretrained BERTmodels (BERT_base, SciBERT,
MatSciBERT, and MatBERT) and ne-tuned them using our
s. (1) The text is tokenized, and the token sequences are used as inputs
RF model, tokens are converted into word embeddings and character-
e BERT CRF model, tokens are embedded with contextualized word
3) As a result, the words in the papers are recognized as entities such as

J. Mater. Chem. A
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own CO2RR corpus. Note that the Bi-LSTM and BERT models
both have a conditional random eld (CRF) layer44 to x the
sequence problems associated with entities in IOBES format.
For example, the CRF layer learns the constraints that I and E
tags cannot appear in the rst word of a sentence and that entity
names must be consistent with the B–I–I–E pattern (for
example, B-catalyst must not be followed by I-product).

The NER performance of the Bi-LSTM and BERT-based
models is presented in Fig. 4. First, for the Bi-LSTM models,
two types of input embeddings were investigated, including
word embeddings alone and the concatenation of word and
character-level embeddings. Overall, the model with the
concatenated embedding performs very similarly to (or only
slightly better than) the model with the word embeddings
alone, which indicates that character-level features are not
critical. The F1-scores for the entities of catalyst, electrolyte, and
onset potential are less than 80%, which is lower than those of
the other entities. The low performance of the electrolyte and
onset potential entities may be due to the relatively smaller
number of training datasets, as shown in Fig. S2.† On the other
hand, the low performance of the catalyst entity is not because
of the training dataset size but because catalyst names are
typically multiword entities. An example of a catalyst name is
“nitrogen-doped carbon sheets”,45 which is composed of four
words. It is more difficult to predict multiword entities accu-
rately because mismatches at the le or right ends results in
false NER predictions. Alternatively, we provide the results of
another evaluation method, namely, boundary relaxation at the
le/right ends,46 as shown in Fig. 4a. In this evaluation scheme,
if the model's prediction for an entity is matched at either the
le or right end, it is considered a correct prediction. Therefore,
by denition, the NER performance is improved in the
boundary relaxation evaluation scheme, as conrmed by the F1-
score of 92.7% for all entities in Fig. 4a. The performance
enhancement is notably large for the catalyst entity because
catalyst names are typically multiword entities.

Next, for the BERT models, four types of pretrained BERT
models (BERT_base, MatSciBERT, SciBERT, and MatBERT)
were ne-tuned based on our catalysis corpus. Note that each
BERT model was trained on a different corpus. BERT_base was
trained based on a general corpus from Wikipedia (∼2500 M
words) and a book corpus (∼800 M). SciBERT was trained based
on the scientic literature (1.14 M papers, with 18% from the
computer science domain and the remaining 82% from the
biomedical domain). MatSciBERT was trained based on the
same corpus used in SciBERT training as well as additional
materials science papers (∼150 k). Finally, MatBERT was
trained based on the materials science literature (∼2 M). The
performance of all NER models, as evaluated through 10-fold
cross-validation, is presented below. The ne-tuned MatBERT
model produced the best NER performance, with an F1-score of
90.4% on average, and the BERT_base model produced the
lowest performance (86.8%). Detailed information on the 10-
fold cross-validation results of the MatBERT model is provided
in Table S5.† This difference can be well understood based on
the constitution of the training corpus. Interestingly, the F1-
score of MatSciBERT (trained based on some materials
J. Mater. Chem. A
science literature) was lower than that of SciBERT (trained
based on no materials science literature). This result likely
occurred because MatSciBERT was trained based on uncased
vocabulary without differentiating between uppercase and
lowercase letters, which is not benecial to performing the NER
task with our corpus. Similar to the Bi-LSTM studies, an eval-
uation based on boundary relaxation at the le/right ends was
adopted, and in this scheme, MatBERT produced an overall F1-
score of 95.2%. The superior performance of the BERT models
over the Bi-LSTM models indicates that the self-attention
mechanism in the BERT models is critical to understanding
the context of our corpus.

The NER performance was further analyzed based on
detailed NER examples, as shown in Fig. 5. Fig. 5a shows two
MatBERT prediction examples (examples 1 and 2) where
boundary relaxations were important. The text in parentheses is
the ground truth, while the text in the background color is the
predicted result based on the NER model. In the rst example,
“BiOI nanoplate precursor-derived” is an adjective that
describes “Bi nanosheets”.47 Here, the ground truth for the
catalyst entity is “Bi nanosheets”; however, the MatBERT model
prediction is “BiOI nanoplate precursor-derived Bi nanosheets”,
which also includes the adjective terms. Similarly, in the second
example, the ground truth for the catalyst entity is “Cu hollow
ber”, but the model predicts a longer word set of “Cu hollow
ber with an interconnected pore structure”, which also
includes its structural description.48 For these cases involving
multiword entities, the evaluation method based on the
boundary relaxation at the le/right ends is more reasonable
since the predicted results include all the necessary information
to fully understand the meaning.

Fig. 5b shows two NER examples (examples 3 and 4) to explain
why the BERT models outperform the Bi-LSTM models. In
example 3, the term “35 min” represents the electrodeposition
time.49 The Bi-LSTM model incorrectly predicts this term as the
entity representing the stability hour, whereas the MatBERT
model correctly ignores the term. This difference is likely because
MatBERT can capture the context within the text better than the
Bi-LSTMmodels and was capable of differentiating stability hours
(one of our 12 entities), and other time entities were not confused.
Since minute is a word representing a time, the Bi-LSTMmodel is
confused by this term. In example 4, the term ultrathin NCS
represents a support material, not a catalyst material.50 The Bi-
LSTM model incorrectly predicts this as a catalyst entity,
whereasMatBERT correctly ignores this term and does not label it
as any of the twelve entities. These examples suggest that Mat-
BERT can understand the contextualized meaning of words better
than the Bi-LSTM models. Finally, Fig. 5c shows two specic
examples (Examples 5 and 6) to explain why MatBERT outper-
forms the other BERT models. The MatBERT and BERT_base
models were trained based on material science literature and
general corpora, including Wikipedia and book corpora. In
example 5, the term RHE denotes the reversible hydrogen elec-
trode, which is a commonly used term in electrochemistry. Mat-
BERT correctly tokenizes RHE to RHE without further letter
decompositions, whereas BERT_base incorrectly tokenizes the
word into three tokens of R, ##H, and ##E (##means a subword of
This journal is © The Royal Society of Chemistry 2023

https://doi.org/10.1039/d3ta02780e


Fig. 4 NER performance of Bi-LSTM and BERT-based models. The graph shows the F1-scores for each entity using the (a) Bi-LSTM CRF model
and (b) BERT CRF model. The hatched bars in the graph are the boundary relaxation results. The entities highlighted in pink represent material
names, and the entities highlighted in purple represent electrochemical measurements. The micro average marked in yellow is the global
average F1-score, which addresses imbalanced entities.
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the preceding tokens). This is because the termRHEdoes not exist
in the vocabulary set used for BERT_base training. Similarly, in
example 6, a single term of hydrocarbon was tokenized into ve
tokens of h, ##ydro, ##car, ##bon, ##s by the BERT_base token-
izer. While the tokenization of BERT_base is not incorrect, it
makes reconstructing the meaning of these common term harder
and more prone to having their meaning diluted by common
subwords. These tokenizer results explain why MatBERT, which
This journal is © The Royal Society of Chemistry 2023
was trained based on the most relevant literature, achieves the
best NER performance.
NER-based analysis of research trends

The trained MatBERTmodel with the best NER F1-score was used
to extract the entities from the abstracts of all 3154 CO2RR papers.
In order to validate the extracted data, we annotated 100 randomly
chosen papers that were not used for model training, and then
J. Mater. Chem. A
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Fig. 5 Example of the results from the tokenizer and NER models. (a and b) The entity predictions of the NER models are shown. The text in
parentheses is the ground truth, which means the target of the NER models, and the text with background color is the predicted label based on
the NER models. Incorrect predictions by the NER models are highlighted in red. (c) Tokens tokenized through different BERT tokenizers are
shown, and the red text emphasizes distinct tokens.
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these annotation results were compared to the predicted results
from the NER models, as shown in Table S6.† The average
performance of our NERmodel across 100 papers was found to be
approximately 91% which well demonstrates the scalability of our
model and affirms the reliability of the extracted data. Using the
extracted data, several yearly trend analyses were performed, as
shown in Fig. 6. We specically focused on trends in CO2RR
products, catalyst design strategies, and elements used in the
catalysts. Fig. 6a–c show in various forms the number of CO2RR
products per year, and Fig. 6d–f show their relative ratios. Here, C1
products refer to products with a single carbon, such as CO, for-
mic acid, methanol, and methane, while C2+ products refer to
products with two or more carbons, such as ethylene and ethanol.
Although research interest in the CO2RR eld has continued to
increase, the ratios of C1 and C2+ products remained unchanged
from 1997 to 2021, as shown in Fig. 6a and d. Although C2+
products are considered more valuable products in industry, the
CO2RR research community still puts more effort (>80%) into
J. Mater. Chem. A
producing C1 products. This trend is probably because C1 prod-
ucts require less energy than C2+ products, making them easier to
produce. Moreover, C1 products such as CO molecules are
considered intermediate species for producing C2+ products.51 In
terms of electrical energy conversion efficiency, C1 products are
more economical products because substantial energy costs are
required for the reduction of carbon dioxide into high carbon
products.52 Fig. 6b and e present various C1 products in terms of
their numbers and ratios; CO and formic acid, which are the
simplest two-electron reduction products, appeared the most,
with proportions of approximately 52% and 30%, respectively.53

CO is likely themost studied product because it is an intermediate
species that can be easily converted into other valuable C2+
products via additional reduction steps.54 Fig. 6c and f show
various C2+ products in a similar format; ethylene and ethanol,
which are both 12-electron reactions, were the two most studied
products over all periods. Over the last three years from 2019 to
2021, the ethylene ratio has increased, which is likely due to
This journal is © The Royal Society of Chemistry 2023
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Fig. 6 NER-based yearly trend analysis of CO2RR products, catalyst design strategies, and elements in catalysts from 1997 to 2021. The yearly
trends of (a–f) products and (g) strategies for catalyst synthesis are shown with the total counts. (h) The top 10 most used elements in order of
ranking. The numbers in parentheses represent the atomic numbers of the elements. 2021*means that only papers published by June 2021 were
used for analysis. Etc in the legends of (b) and (e) includes carbonate and bicarbonate, while Etc in (c) and (f) includes oxalate, acetaldehyde, and
acetone.
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ethylene having a lower energy barrier than ethanol, whichmeans
that ethylene is relatively easier to produce.55

Fig. 6g shows the trends in catalyst design strategy from 1997
to 2021. Seven strategies were selected, including core–shell,
defect engineering, alloy, single atom, doping, architecture
engineering, and shape control. These strategies were dened
based on the words that appear frequently in the titles of the
papers, as shown in Table S7.† Until 2017, the strategy of shape
control dominated; however, its ratio gradually declined,
whereas the ratios of the single-atom catalyst (SAC) and archi-
tecture engineering strategies clearly increased. In particular,
SAC has recently drawn much attention because it offers the
benets of high catalytic activity, selectivity, and diverse
elemental combinations.56

Dual-atom catalysts (DACs) have recently garnered much
attention in the research and development of electroreduction
This journal is © The Royal Society of Chemistry 2023
processes. In comparison to SACs, they have not only a similar
ability to utilize almost 100% of the catalyst atoms but also
much enhanced electronic property, improved activity, and
selectivity.57 Upon examining the 3153 literature we collected, it
was veried that there are 7 papers focusing on dual-atom
catalysts. We searched Web of Science for dual-atom catalysts
to collect the most recent developments in the eld. There has
been a considerable amount of research articles (25 papers)
published in 2022 and 2023. Combining these recently acquired
publications with the initial seven, we then applied our model
to a total of 32 papers, and achieved approximately 88% F1-
score (micro average over all entities) as summarized in Table
S8.†We further analyzed the combinations of catalytic elements
used in the dual-atom catalysts that were taken from the liter-
ature. As shown in Fig. S3,† the combinations of transition
J. Mater. Chem. A
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metals (Fe, Ni, Co, etc.) that are frequently utilized as single-
atom catalysts were also most found in dual-atom catalysts.

Fig. 6h shows the trend of the most used elements (top 10
elements) in catalysts by year. Examining the overall ranking of
the elements, it is evident that there has been a shi in trends,
with a decreased reliance on noble metals and increased utili-
zation of transition metals. As illustrated in Fig. S4,† transition
metals such as Fe, Co, Ni, Cu, and Zn are associated with CO
production and have similar or higher FE values compared to
noble metals like Pd, Ag, and Au. Note that Cu was the most
used in all years from 1997 to 2021. Cu is the only element
offering appropriate binding energy to produce both C1 and
C2+ products such as hydrocarbons and alcohols.58 In contrast,
the rank of Pt has decreased gradually every year. Pt is an
expensive noble metal and has been reported to perform worse
than Cu in terms of CO2RR activities.59 Interestingly, Bi has
appeared in the top-10 ranking since 2018, and its frequency
has increased rapidly. Bi is inexpensive, inert and environ-
mentally friendly and, most importantly, is known to be highly
active for formic acid production.60

An NER-based trend analysis of the CO2RR performance was
also carried out from 1997 to 2021, as shown in Fig. 7. Among
several performance-related entities, including the faradaic
efficiency (FE), current density, overpotential, turnover
frequency, and stability hours,61 the former two entities (FE and
current density) were chosen for detailed trend analyses
because these two entities were reported the most frequently in
the abstracts of papers. Note that the FE (unit%) means the
selectivity (unit%) in electrochemistry, and the current density
(unit mA cm−2) is the measured current value divided by the
electrode area, which represents the reaction rate or catalytic
activity.62–65 In Fig. 7a–d, a clear difference was observed for FE
trends between C1 products (CO and formic acid) and C2
products (ethylene and ethanol). Since 2016, the reported FE
values for C1 products have mostly been over 80%, whereas for
C2 products the FE values have typically been below 80%. These
C2 products, including ethylene and ethanol, require compli-
cated multistep reactions involving 12 electrons, and thus,
selectively synthesizing these C2 products is more difficult than
C1 products.

The trends of the reported current density values are pre-
sented in Fig. 7e–h. The current density values are lower for C2
products than C1 products. Similarly to the FE values, the
complicated multistep reactions for the C2 product require
a high overpotential and result in low activity compared to the
relatively simpler reactions for the C1 products. Nevertheless,
current density values have gradually increased over time. The
improvements can be attributed to the development of both
new catalyst materials and new electrochemical cell architec-
tures. For example, the best performance of a CO-producing
catalyst62 was from the reaction taking place in solid oxide
electrolysis cells (SOECs) at high temperatures. Similarly, the
best performance of ethylene-producing catalysts64 was ach-
ieved by introducing a new architecture to gas-ow electro-
chemical cells. However, the majority of the reported current
density values were less than 200 mA cm−2. Since the current
density is required to be more than 200 mA cm−2 for CO2RR
J. Mater. Chem. A
catalysts to be utilized industrially,66 there is still much room for
improvement in terms of the current density.
NER-based guidance of research directions

NER offers the ability to conduct yearly trend analyses for
diverse entities and may also offer novel insights regarding
CO2RR research directions. We present the explorable area map
in Fig. 8a, which was generated by counting the catalytic
elements and CO2RR products that appear in the same papers.
The area map shows which elements have been most actively
used for specic products and indicates which parts were
overlooked and are potentially promising. Some key informa-
tion that can be determined based on the area map is
summarized as follows. First, Cu is the most actively used
catalytic element for producing both C1 and C2 products, and
its dominance is particularly notable for C2 products, including
ethylene and ethanol. Second, post-transition metals such as Sn
and Bi have been widely used for the production of formic
acid.67 The yearly trends of metalloid and post-transition metal
elements are provided in Fig. S5,† which shows a clear increase
in Bi and In elements. Moreover, for formic acid productions,
the percentage of Bi in the highest faradaic efficiency range (80–
100%) is noticeably higher than other transition metals as
shown in Fig. S4,†which supports the recent increasing trend of
Bi. Finally, precious metals such as Ag, Pd, and Au are used as
catalysts for C2 products, although they are not used in large
numbers. Recent studies have shown that alloying precious
metals with Cu is a viable approach to increase selectivity in
generating C2 products.68–70 Although Cu is known to have
optimal CO binding energy for CO2RRs, it suffers from low
selectivity to specic products because of the numerous CO2RR
reaction pathways. This problem could be solved by alloying
with other elements, such as precious metals. Similarly, other
elements, such as transition metals and post-transition metals,
could also be alloyed with Cu to increase the selectivity of C2
products.

Next, the relations among the elements, catalyst synthesis
strategies, and CO2RR products were analyzed using association
rule mining (ARM)71 and are visualized as graphs in Fig. 8b–g.
ARM is a rule-based machine learning method for discovering
interesting relationships between variables in large databases,
which is oen called market basket analysis. A detailed
description of this algorithm is provided in the Methods
section. ARM can be applied to reveal how oen certain
elements, products, and synthesis strategies are found simul-
taneously in papers. The nodes in the graph represent the types
of entities, and the thickness of the edges represents their
correlation strength.

Fig. 8b shows the entire graph of the ARM result, and Fig. 8c–
g show the subgraphs that illustrate certain nodes and their
connections for emphasis and detailed analysis. Fig. 8c presents
a subgraph that highlights nodes that are connected to formic
acid. Many post-transition metals, including Sn, Bi, and In, can
be observed, which is consistent with the results in Fig. 8a.
Fig. 8d shows a subgraph highlighting nodes that are connected
to bismuth. We found that the shape control strategy appeared,
This journal is © The Royal Society of Chemistry 2023
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Fig. 7 NER-based yearly trend analysis of the CO2RR performance from 1997 to 2021. The heatmaps show the faradaic efficiency (blue) and
current density (pink) by year. The color represents the normalized count, which is calculated by dividing the faradaic efficiency or current density
in a specific range by the total faradaic efficiency or current density for that year. The red stars and numbers indicate the best performance of the
current density for specific products and ref. 62–65 2021* means that only papers published by June 2021 were used for analysis.
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indicating that Bi-based catalysts are frequently synthesized by
shape control strategies for formic acid production. This kind of
ternary relationship was not found in the area maps that relate
only two entities but were noted in the ARM analysis.

Fig. 8e shows a subgraph highlighting nodes that are con-
nected to ethylene. Interestingly, Cu and Ag appeared together,
indicating that these two elements are synergistic for ethylene
production.72,73 Indeed, many Cu–Ag bimetallic catalysts were
found, with Ag observed for desorption–resorption and diffu-
sion processes for C–C coupling on the Cu surface to effectively
synthesize ethylene species. In addition, in Fig. S6,† one can
observe that Cu, Ag, and Co are the elements that perform well
in ethanol productions. Further investigations of these relevant
articles uncovered that the ethanol production involved various
catalysts such as Cu–Ag,65 AgCo alloy,74 Ag nanoparticles
deposited on 3D graphene-wrapped nitrogen-doped carbon
foam,75 and CoO-anchored N-doped carbon materials
comprising mesoporous carbon (MC) and carbon nanotubes
(CNT).76 Based on these ndings, we believe that the develop-
ment of catalysts employing synthetic strategies like bimetallic
catalysts combining Cu with other elements and the incorpo-
ration of Co and Ag into carbon matrices through doping hold
promise for the creation of catalysts capable of producing C2
products such as ethanol and ethylene.
This journal is © The Royal Society of Chemistry 2023
Fig. 8f presents a subgraph highlighting nodes that are
connected to SAC, where transition metals, including Ni, Co
and Fe, can be observed.77 This result is consistent with the
explorable area map relating the product and catalytic elements
for the SAC strategy case, as provided in Fig. S7.† The SAC
strategy is particularly active for CO production and is generally
not functional for other products.78 SAC is not linked to any of
the C2 products because SAC cannot be used for C–C coupling
due to its structural limitations. Furthermore, the distribution
of 151 SAC papers (for CO productions) connected over used
elements and FE value ranges, as shown in Fig. S8.† It was
observed that transition metals such as Ni, Fe, Co, Cu, and Zn
are commonly used as SACs. Also, we found that Ni and Fe are
mostly connected to the highest FE range (90–100%). Cobalt
(Co) overall underperforms than Ni or Fe, and this nding is
probably due that Co SAC has low activation barriers for
hydrogen evolution reaction (HER) and low selectivity to
CO2RR.79 Interestingly, Ni is linked to the SAC node, although
bulk Ni is not active for CO production because of severe CO
poisoning issues due to its very strong binding energy.61,80,81

However, Ni in SAC offers a reduced CO binding energy and can
thereby increase the activity and selectivity for CO production.80

Fig. 8g shows subgraphs that highlight nodes that are con-
nected to Mo, Mn, and Cr. In our dataset, no paper reported the
J. Mater. Chem. A
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Fig. 8 NER-based guidance of research directions. (a) Explorable area heatmaps of products for each element in CO2RR catalysts. The color
represents the count of products related to the specific elements that appear in the same abstract. Groups of elements are divided with vertical
lines. In the tick labels on the x-axis, the number in parentheses represents the atomic number. (b–g) Visualization of the ARM results. The nodes
with blue, orange, and green colors represent the elements of the catalyst, the strategy to synthesize the catalyst, and the product, respectively.
The thickness of an edge represents the association between two nodes. (b) Is the entire graph of the ARM result. (c) Is a subgraph highlighting
nodes that are connected to formic acid. (d) Is a subgraph highlighting nodes that are connected to bismuth. (e) Is a subgraph highlighting nodes
that are connected to ethylene. (f) Is a subgraph highlighting nodes that are connected to SAC. (g) Subgraphs highlighting nodes that are
connected Mo, Mn, and Cr are merged. Nodes that are connected to Mo, Mn, and Cr are represented by pink, green, and light blue edges,
respectively.
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effectiveness of Mo, Mn, and Cr elements as SACs in CO2RRs.
However, these elements were strongly connected to Fe, Co, and
Ni, which are the most active elements for SAC. In ARM, the
strong connections indicate that the connected components are
J. Mater. Chem. A
used together in the same study and may thus possess similar
properties. For example, Cr and Mn were used as SACs on gra-
phene for CO oxidation and had similar CO adsorption energies
compared to Fe, Co, and Ni.,82 which suggests the potential of
This journal is © The Royal Society of Chemistry 2023
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Cr, Mn, and Mo to be used as SACs for CO2RRs. In fact, we
found some recent papers (not included in our dataset)
reporting Cr, Mn, and Mo elements as SACs,83,84 which supports
the usefulness of our NER models and the subsequent analyses.
Methods
Doc2Vec and LDA training

We trained Doc2Vec and LDA for document clustering before
developing the NER models. Since the words in the corpus are
used for learning, text preprocessing was used to reduce the
corpus complexity so that only meaningful words were used for
training. Doc2Vec was trained using both the abstracts and
main texts of 4838 papers. These 4838 papers were obtained
from the keyword query-based screening process with the
keywords “CO2” AND “reduction” AND “reaction” AND “cata-
lyst” AND “faradaic” AND (“electrochemical” OR “electro-
reduction” OR “electrocatalytic” OR “electro”). The papers used
for training were tokenized using ChemDataExtractor.32 The
chemical nding function in ChemDataExtractor was used to
preprocess all tokens except chemicals to lowercase. The size of
the document vector was set to 200.

LDA was trained using only the abstracts of 4838 papers.
Preprocessing similar to that performed for Doc2Vec was
applied, and lemmatization was performed to nd the lemma of
the word inected in various forms in a sentence using the
NLTK library.85 In addition, stop words, words with one letter
and words with an occurrence frequency of 20 or less were
removed. Aer the number of topics (k) is determined, the LDA
algorithm nds k topics based on all documents and deter-
mines which topics a random document contains. To develop
a proper LDA model, it is vital to set an appropriate number of
topics. To determine the appropriate number of topics, both
perplexity and coherence were considered. Perplexity deter-
mines how accurately the probabilistic model predicts the
outcome, while coherence determines how semantically
consistent the topics are. In our case, the number of topics (k)
was chosen as 11 because of the small perplexity and high
coherence values associated with this number of topics.
NER model development

For the NER models, both the Bi-LSTM CRF model and BERT
CRF model were used. First, we trained the Bi-LSTM model
using the air library.86 In the Bi-LSTM model, the embedding
layer consists of a 100-dimensional word embedding layer and
a 50-dimensional character-level word embedding layer. In the
Bi-LSTM model, the maximum number of epochs was 100, the
learning rate was 0.2, and the batch size was 8. Word embed-
dings were pretrained with both the abstracts and main texts of
4838 papers using Word2Vec. On the other hand, for BERT
models, we retrained the existing BERT models (MatBERT,
MatSciBERT, SciBERT, and BERT base) using our own corpus
obtained from the catalysis literature. The tokens in the BERT
models were generated using each model's tokenizer. Each
pretrained model was retrained with 500 CO2RR papers that
were selected according to the Doc2Vec-based ranking, as
This journal is © The Royal Society of Chemistry 2023
shown in Fig. 2c. The optimizer was AdamW, and training was
carried out while changing the learning rate using the warmup
scheduler. The batch size was selected as 32 based on hyper-
parameter tting, as shown in Table S9.† The Bi-LSTM and
BERT models both have CRF layers to address sequence prob-
lems associated with entities in IOBES format by learning the
constraints and rules, including that the tag of the rst word in
a label starts with B (Beginning) in IOBES format.

The annotated abstracts were divided into training, valida-
tion, and test sets prior to classier layer training. The test set
was used to evaluate the model's nal performance based on
data that were not used for training, while the validation set was
used to optimize the model's hyperparameters. The training,
validation, and test sets were divided according to the ratio 8 :
1 : 1. Tenfold cross validation was used to obtain more gener-
alized performance compared to training with only one
division.

Postprocessing aer NER-based data extraction

We created a dictionary of products and chemical elements to
process synonyms among the words extracted using the NER
model. For example, copper and Cu are the same element, and
both were converted to Cu. Additionally, CH4 and methane are
the same chemical, and both were converted to methane.
Among the extracted entities, there are various units for the
same entity. For example, the current density values can be
expressed in mA cm−2, A cm−2, and mA cm−2 depending on the
authors' needs. In this case, the current density values were all
converted to mA cm−2 through the Python code.

Association rule mining

We used the Python library mxltend to implement ARM. Apriori
is a popular algorithm for ARM that extracts frequent item sets
from given data. The apriori function requires data in a one-hot
encoded data frame format, and thus, we used Trans-
actionEncoder to prepare an appropriate data format. Frequent
item sets were formed with min_support values greater than or
equal to 0.005. Support means the number of appearances of
a specic item divided by the total number of instances.
min_support means the minimum support for the item
combination to be returned. In other words, if the support of an
item combination is 0.005 or less, it is not formed as a frequent
item set. When creating a frequent item set, there is no limi-
tation on the maximum number of item combinations, and all
possible item combinations under the given condition are
returned. Association rules are created based on frequent item
sets, which are the a priori results. The default value condence
was used as an evaluation index, and min_threshold was set to
0.005 to generate only association rules with condence levels
of 0.005 or higher.

Conclusions

This work presents a text mining protocol for catalysis litera-
ture, taking CO2RR-related literature as an example. Performing
text mining based on a large volume of literature in a specic
J. Mater. Chem. A
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target domain requires very careful and specialized annotations
andmodel development, unlike the same tasks in general areas.
We rst developed a method based on Doc2Vec and LDA to
selectively screen CO2RR-related papers while reducing the
number of irrelevant papers. This method led to the collection
of 3154 CO2RR papers, which were used for further analysis.
This method requires the input of only tens of seed papers
prepared by a user and may therefore be effective for use in
other domains. Next, we developed and reported a MatBERT-
based NER model, which was applied to extract twelve key
entities, including catalyst names and catalytic performance
information in the CO2RR papers. This model achieved an
extraction F1-score of 90.4% (up to 95.2% in the boundary
relaxation evaluation scheme). The NER-based accelerated data
extraction scheme from a large volume of literature enables
several interesting analyses, such as the yearly trend analyses of
CO2RR catalysts, products, and performance. This analysis
highlights the recent element usage trends, such as the boost of
post-transition metal elements of Bi and In for formic acid
production. In addition, it also reveals the potentially effective
material space in CO2RRs, including transition metal elements
of Cr, Mn and Mo for SAC. This work is, to our understanding,
the rst attempt to apply text mining to a large volume of
catalysis literature and will serve as a great reference for similar
future studies in the catalysis eld.

Finally, we note the limitations of our study as well as
potential future studies, especially for large scale. First, this
study explored only abstracts of the papers as opposed to the
full bodies of the papers. For example, the catalytic performance
may be greatly inuenced by the type of cell; however, our study
was not able to obtain this information because such specic
information is typically found in the main body rather than in
the abstract. Thus, a performance analysis considering these
detailed parameters was unfortunately not conducted.
Expanding our study to the entire body of the paper remains an
important future research direction. The second limitation of
this work is the absence of relation extraction between entities.
NER enables only entity extraction and cannot be used to
determine the relationships among the entities. For example,
the catalyst names and catalytic performance were not system-
atically linked. The lack of proper entity relations may limit data
utilization. Thus, it is important to extract entities and deter-
mine their relations using NLP techniques such as relation
extraction.87,88 Third, the data extractions from tables and
gures are also important, as they oen contain key informa-
tion, such as performance data. This information cannot be
obtained using current NERmethods. The tabular data from the
tables of a paper could be handled using data analysis libraries
including Pandas;89 however, it is important to standardize the
tabular data because the formats of the table are much different
across papers and journals. For gures, numerous vision tech-
niques are rapidly developing which are applicable to a graph90

and microscopy images,91,92 which were proven to be very
effective to extract the data from the gures in papers. Lastly, we
observed that the NER performance is lower for catalyst name
entities than for other entities, probably because researchers
describe catalyst names in various forms in different papers.
J. Mater. Chem. A
The MatBERT model pretrained with materials science papers
worked fairly well aer ne-tuning based on catalysis literature;
however, the accuracy can be further increased by developing
catalysis-based BERT models pretrained with millions of catal-
ysis papers, which should be considered in a future study.
Despite these limitations, the large amount of data extracted
from the catalyst literature allowed us to evaluate valuable
information, such as research trends and directions in the
CO2RR eld, which will hopefully inspire similar efforts in other
catalysis elds.
Data and code availability

The text-mining code and related data are available at https://
github.com/KIST-CSRC/CO2RR_NER or can be obtained from
corresponding authors upon request.
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