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Bespoke Metal Nanoparticle Synthesis at Room
Temperature and Discovery of Chemical Knowledge on
Nanoparticle Growth via Autonomous Experimentations

Hyuk Jun Yoo, Nayeon Kim, Heeseung Lee, Daeho Kim, Leslie Tiong Ching Ow,
Hyobin Nam, Chansoo Kim, Seung Yong Lee, Kwan-Young Lee,* Donghun Kim,*
and Sang Soo Han*

The optimization of nanomaterial synthesis using numerous synthetic
variables is considered to be an extremely laborious task because
conventional combinatorial explorations are prohibitively expensive. In this
work, an autonomous experimentation platform developed for the bespoke
design of metal nanoparticles (NPs) with targeted optical properties is
reported. This platform operates in a closed-loop manner between the batch
synthesis module of metal NPs and the UV–vis spectroscopy module, based
on the feedback of the AI optimization modeling. With silver (Ag) NPs as a
representative example, it is demonstrated that the Bayesian optimizer
implemented with the early stopping criterion can efficiently produce Ag NPs
at room temperature precisely possessing the desired absorption spectra
within only 200 iterations (when optimizing among five aqueous synthetic
reagents). In addition to the outstanding material developmental efficiency,
the analysis of synthetic variables further reveals a novel chemistry involving
the quantitative effects of citrate in Ag NP synthesis. The amount of citrate is
key to controlling the competition between spherical and plate-shaped NPs
and, as a result, affects the shapes of the absorption spectra as well. This
study highlights both capabilities of the platform to enhance search
efficiencies and to provide novel chemical knowledge by analyzing datasets
accumulated from autonomous experimentations.
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1. Introduction

Nanoparticles (NPs) have extensively been
utilized in various applications including
solar cells,[1–4] catalysis,[5–7] and chemical
sensors[8–10] due to the wide tunability of
electronic and optical properties through
the manipulation of their size, shape, and
surface states.[11–14] In particular, the wet
chemical synthesis of colloidal NPs has at-
tracted much attention mainly because of
its low-cost and solution-based processing.
The properties of colloidal NPs are known
to be highly affected by numerous synthetic
variables, including solution volume,[15,16]

concentration,[17–19] injection rate,[20,21] syn-
thetic sequences,[22] and aging time.[23,24]

Currently, combinatorial experiments (aka
Edisonian approach) are often used to de-
sign NPs that exhibit desired properties,
but these trial-and-error-based methods are
extremely laborious and time-consuming,
which inspires the need for an approach
of more intelligent explorations over large
chemical spaces.
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Autonomous material developments based on artificial intel-
ligence (AI) have recently emerged as a promising direction to
maximize the search efficiency over various classes of materi-
als, including organic molecules,[25–27] perovskite,[28,29] colloidal
quantum dots,[30] and nanoparticles.[31–35] For example, Abol-
hasani and coworkers[30] adopted AI in their quantum dot de-
velopmental systems, where only 920 trial experiments were
sufficient to reach the target properties. Similarly, Cooper and
coworkers[36] reported an autonomous developmental system for
finding photocatalytic materials where ten environmental syn-
thetic conditions were successfully optimized with less than
700 experiments in a week, which is a surprisingly small num-
ber given the vast parameter spaces over ten dimensions. Such
dramatic enhancements in the search efficiency were achieved
mainly because AI models effectively learn the correlations be-
tween synthetic conditions and properties and, as a result, sug-
gest improved synthetic recipes as next trial conditions.

Certainly, recent reports regarding autonomous NP synthesis
have demonstrated accelerated experiments aided by robotic data
collections[25–36] and AI optimization modeling.[37,38] Although
the significantly enhanced search efficiency is regarded as the ut-
most value of an autonomous laboratory, we believe that a novel
chemical knowledge discovery could naturally be created since
the AI robotic systems are destined to explore not only the broad
range of chemical spaces but also the relationship between the
reaction conditions and the corresponding material properties.
In typical laboratory environments (e.g., without robotics and
AI), researchers often intuitively exclude the majority of the avail-
able chemical input spaces to intentionally avoid negative results
and expedite experimentation, which severely hinders new chem-
istry discovery. On the other hand, since no prior knowledge is
provided, the AI robotic platforms in autonomous laboratories
are capable of conducting broader exploration toward identifying
both positive and negative results, which should be well-suited
for novel chemistry discovery by revealing the effects and inter-
dependency of certain parameters of synthetic ingredients. De-
spite these possible benefits, previous reports focused mainly on
improving material developmental efficiency but lacked efforts
to find chemical insights from the operations of AI robotic plat-
forms.

In the process of developing new materials, a primary goal is
often to discover materials that exhibit the most superior proper-
ties. For instance, when developing catalysts, the aim is to dis-
cover materials that maximize catalytic activity, selectivity, and
stability. In addition, in certain cases, one may need to develop
a material that satisfies multiple specified properties simultane-
ously. For example, researchers may seek metallic NPs with sizes
of 5 nm and spherical shapes, or they may desire plate-like NPs
with sizes of 10 nm. Moreover, there are situations where materi-
als with known properties are needed but the synthesis condition
remains undisclosed. Such scenarios call for a bespoke approach
to tailor materials according to specific user requirements. To ac-
celerate materials discovery, computer simulations such as den-
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sity functional theory have become prevalent.[39] While these
methods efficiently identify materials with the maximized prop-
erties based on the structure-property relationship, achieving be-
spoke design with the current computer simulation techniques
remains quite challenging. In contrast, an autonomous labora-
tory offers a more comprehensive approach to materials develop-
ment. By utilizing an autonomous laboratory, it can be feasible
to determine the synthesis conditions for materials possessing
desired properties on the basis of the relationship between the
synthesis parameters and the material properties (i.e., a process-
property relationship).

Herein, we report an autonomous laboratory for the bespoke
metal NP developments with target optical properties. The plat-
form operates based on robotic executions of the metal NP syn-
thesis module in an aqueous medium at room temperature (RT),
and UV–vis spectroscopy module as well as AI-driven exploration
of synthetic recipes. Using Ag NPs as representative materials,
we demonstrate that our Bayesian optimizer with the early stop-
ping criterion successfully generates Ag NPs with target absorp-
tion spectra within only 200 iterations when optimizing across
five synthetic reagents without any prior knowledge. Quantita-
tive estimations revealed that the number of required experi-
ments increases approximately in a linear manner with the in-
creasing number of synthesis variables, in contrast to the grid-
based search scheme in an exponential manner. In addition to
the search optimization efficiency, our analysis of synthetic vari-
ables further unraveled a novel theory regarding the quantita-
tive effects of citrate in Ag NP synthesis: The amount of cit-
rate is key to controlling the competition between spherical and
plate-shaped Ag NPs, which affects the peak intensity and peak
sharpness in the absorption spectra. This work highlights that
AI robotic platforms can significantly enhance material devel-
opmental efficiency and unveil previously unknown chemistry
based on datasets collected using autonomous experimentations.

2. Results and Discussion

2.1. Closed-Loop NP Design in the Autonomous Laboratory

Our closed-loop operations for the NP development are schema-
tized in Figure 1a. Our autonomous laboratory was designed
to output Ag NPs possessing a given target absorption spec-
trum based on the robotic automation of metal NP batch syn-
thesis, UV–vis spectroscopic characterization, and AI modeling.
The system functions as follows: 1) the target property is given
as an input: for example, Ag NPs with a maximum-intensity-
wavelength (𝜆max) of 573 nm, 2) robotic platforms operate to
obtain synthesis and characterization datasets, 3) the AI model
learns those datasets to suggest a better synthetic recipe or con-
ditions, and finally, steps 2) and 3) iterate until the target property
is achieved.

2.2. Hardware Setting and Automation

Figure 1b shows the bird’s eye view of our hardware, where
each NP synthesis module (left part of Figure 1b) and UV–vis
spectroscopy module (right part of Figure 1b) are separately
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Figure 1. The autonomous laboratory platform for bespoke NP design with target optical properties. a) Scheme of the closed-loop operations for the
development of Ag NPs with desired absorption spectra, as exemplified by 𝜆max of 513, 573, and 667 nm. b) A bird’s eye view image of our autonomous
laboratory and schematic illustrations of the batch NP synthesis module (left) and UV–vis spectroscopy module (right). The synthesis module automat-
ically synthesizes colloidal Ag NPs, while the UV–vis spectroscopy module extracts the optical properties of the synthesized NPs. AI models optimize
the synthetic recipe, although not illustrated in this figure.

shown. A video depicting hardware operations is available in
Video S1 (Supporting Information) for an easier understanding
of our system components and their interactions. The batch
synthesis module is composed of vial storage, a stirring ma-
chine, and a solution dispensing system. The vial storage system
is a self-designed two-story vial holder system where unused
(empty) and used (solution-filled) vials are spatially separated in
the bottom and top floors, respectively. Both floors have some
gradients along the z-axis and are equipped with a servo motor

with Arduino Uno so that the vials continuously and smoothly
move down by gravity. The detailed design principles of our vial
storage system are provided in Figure S2a (Supporting Infor-
mation). We believe that our vial storage would be useful when
applied to other types of chemical vessels, and high capacity
(including 80 vials) enables closed-loop experimentations with
minimized human interventions. The stirring machine supports
16 vial holders which enables the simultaneous execution of
multiple synthetic experiments. The solution dispensing system
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consists of a stock solution, syringe pump, dispenser, and XYZ
linear actuator, as shown in Figure 1b and Figure S2 (Supporting
Information). Each stock solution was stored in an ice bath to
prevent the degradation of chemicals. Each syringe pump and
the XYZ linear actuator precisely control the volume/rate and
target positions, respectively, for the task of solution movements
from the stock into vials on the stirring machine. Moreover,
the UV–vis spectroscopy module (right part of Figure 1b) is
composed of a chemical vessel container, pipetting system, and
UV–vis spectrometer system. Note that a cuvette is a transparent
and very small scale (2 mL) vessel that is prototypically used for
optical measurements, and thus the pipetting system is neces-
sary to sample the colloidal NP solutions into cuvettes based on
OpenLH.[40] The movements of chemical vessels between the
synthesis and characterization modules are controlled by the
robotic arm with an OnRobot gripper. More detailed information
about our hardware settings is provided in Figures S1–S3 (Sup-
porting Information). Importantly, note that the batch reactor
system is chosen rather than the microfluidic reactor system
in our study, although the microfluidic reactor system has the
advantages of lower chemical consumption and higher data
generation throughput. In a larger picture, the developed NP de-
velopmental platform will be a part of the catalysis and battery de-
sign platform where both solid-state synthesis and solution-type
synthesis are required. A batch reactor system with a robotic arm
is a more flexible option, especially for powder-type synthesis,
and therefore batch reactors are preferably adopted in our study.

It is worth noting the vision system of our autonomous labo-
ratory (although not the main focus of this study), which is de-
signed to detect any machine failure cases based on object detec-
tion techniques. Our systems operate without human interven-
tion, which may lead to dangerous situations, such as imperfect
vial movement and positioning. To address these safety problems
and to improve the fidelity of our system, vision systems were in-
troduced to continuously monitor operational errors at several
sites including stirring machines (for vial positioning detection),
cuvette holders (for cuvette positioning detection), and pipetting
system (for pipette tipping detection). Our object detection model
implemented in the laboratory (named DenseSSD[41]) was previ-
ously reported and was demonstrated to be much more efficient
than traditional computer vision models for detecting transpar-
ent objects such as chemical vessels. At least a few hundred real
scenes were collected at each monitoring site for the machine-
learning training and validation of the DenseSSD model. When
the model detects failure cases, it is programmed such that the
whole operation is immediately halted to prevent any possible
dangers. Despite the recent increasing attention to autonomous
developmental systems in the materials science community, we
importantly note that there is a lack of effort to address safety is-
sues in fully robotic (researcher-free) environments. We propose
that our vision-based safety alert system can become an essential
component for the democratization of the autonomous material
synthesis laboratory without human surveillance. More detailed
information about the vision system is provided in Figure S3c
(Supporting Information) as well as our previous work.[41]

Measuring instrumental errors is critical to understanding the
reliability of the hardware systems. The precisions of the hard-
ware components in both the NP synthesis and characteriza-
tion modules were tested as follows. First, for the solution dis-

pensing systems, the injection volume was precisely controlled
as evidenced by the 0.999 R2 value, which substantially outper-
forms conventional pipettes as shown in Figure S4a,b (Support-
ing Information). Second, a precision test of the pipetting sys-
tem in UV–vis spectroscopic characterizations were performed
in Figure S4c (Supporting Information), and a precision test of
UV–vis spectrometer was performed, where the deviation in the
wavelength peak position was measured to be very small at ap-
proximately only 4.35 nm, as shown in Figure S4d (Supporting
Information). Using these reliable instruments, we performed
the NP synthesis and UV–vis spectroscopic characterizations 100
times with identical recipes, and the deviations of three optical
properties including 𝜆max, full width at half maximum (FWHM),
and peak intensity were measured to be very small as shown in
Figure S4e (Supporting Information), indicating that our experi-
mental systems are highly reliable.

2.3. Synthesis Recipe Optimization Modeling

Our autonomous laboratory platform sought to synthesize Ag
NPs with target optical properties that are tailored to predefined
requirements. Ag NPs with specific optical properties are well
known to be functional in diverse applications such as biomed-
ical applications,[42] sensors,[43,44] light emission diodes,[45] and
sensitizers of solar cells.[1–4] In particular, when mixed Ag NPs,
consisting of red (absorption spectrum with 𝜆max = 513 nm),
purple (𝜆max = 573 nm), and blue (𝜆max = 667 nm) NPs, have
been used as light-trapping materials for broad light-harvesting
in organic solar cells and achieved remarkable enhancement in
efficiency.[3] However, since all of the three Ag NPs are commer-
cialized, their synthesis recipes are unknown. Herein, we aim
to reproduce commercialized Ag NPs via our autonomous labo-
ratory in which the target absorption spectra are obtained from
the literature.[3] We used five aqueous reagents, AgNO3, H2O2,
NaBH4, citrate, and H2O, as ingredients for Ag NP synthesis, and
their volumes were parameterized in the optimization process.
More details of the absorption spectra and synthesis process are
shown in Figures S5 and S6 (Supporting Information). In addi-
tion, we introduced a fitness function, ranging between −1 and
zero, based on the matches of three features of 𝜆max, FWHM, and
peak intensity to measure the similarity of the produced prop-
erty and the targeted one. The mathematical equation for the fit-
ness function is provided in the Experimental Section and Figure
S7 (Supporting Information). Out of three factors that construct
the fitness function, the heaviest weights (90%) were given to the
match of 𝜆max while much smaller weights (<10%) were assigned
to the other two factors. We note that in general applications,
these weight assignments would depend on the relevant exper-
imental targets.

Bayesian optimization is a probabilistic optimization tech-
nique used for optimizing complex, noisy, and expensive ob-
jective functions. It is particularly valuable when the evalu-
ation of the objective function is resource-intensive or time-
consuming experiments or simulations. Owing to these bene-
fits, Bayesian optimization has recently been considered the most
effective algorithm today in realizing autonomous experimen-
tation platforms.[27–29,33,34,36–38] We implemented Bayesian opti-
mization with a Gaussian process regression, which interpolates
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each data point as expected improvement and entropy search.
Among them, the upper confidence bound (UCB) was adjusted
to balance exploitation and exploration processes. Let a UCB ac-
quisition function be defined as the following equation:

UCB = 𝜇 (X) + 𝜅𝜎 (X) , (𝜅 = 10) (1)

where X = {x1,…, xn} is the vector of variables, 𝜇(X) is the mean
function, 𝜎(X) is the deviation and 𝜅 is the weight of exploration.
To generate initial data points, Latin Hypercube Sampling[46]

(LHS) was implemented to explore the data distribution evenly
for each parameter, and devoid of conventional sampling artifacts
(grid or random samplings). It can reflect the variation in synthe-
sis conditions with a small amount of data. Therefore, we utilized
LHS to generate 20 samples for initial data points, instead of grid
or random sampling. We used the Matern kernel function, con-
stant scaling, and noise, which can allow interpolation smooth-
ness and experimental errors. The code of Bayesian optimization
was based on past research.[36] UCB was assembled using mean,
deviation, and 𝜅. 𝜅 value was chosen as 10 in our study after a se-
ries of benchmarking tests between 2 and 20, as shown in Figure
S8 (Supporting Information). It was found that, for 𝜅 value of
10, we found that exploration and exploitation were the most bal-
anced, and the optimizer successfully reached to global optimum
with great efficiency.

To maximize the search efficiency without much sacrificing
the accuracy, we implemented a stopping rule named the early
stopping criterion, which was conceived from the early stopping
regularization method[47,48] to prevent overfitting issues in ma-
chine learning. Therefore, the early stopping function was modi-
fied to add a filter exploration process. The value of patience was
set to 5, and the filter value was set to −0.1 as a hyperparameter.
In our early stopping scheme, when the best fitness value (be-
tween −0.1 and zero) is not updated even after five consecutive
iterations (i.e., the patience of 5), then the optimization search
stops. Details of our Bayesian optimization with early stopping
code implementation can be found in Figure S9 (Supporting In-
formation) and the Data availability statement.

We used a Bayesian optimization model with the UCB func-
tion, and Figure 2a shows the evolution of the fitness using
the Bayesian optimizer for the example of the 573 nm (𝜆max)
target property. Since the acquisition function of the UCB was
applied,[28,36] exploitation and exploration were simultaneously
considered, and as a result, some fluctuations in fitness were
observed in Figure 2a, rather than a monotonic increase in the
fitness values. Figure 2b,c shows the evolutions of the absorp-
tion spectra and five aqueous reagent volumes, respectively, as
the experimental iterations proceed. For this exemplary case of
the 573 nm (𝜆max) target property, it took less than 200 iterations
for the AI model to reach the optimal result. Until ≈100 itera-
tions, the produced absorption spectra are found to be much dif-
ferent from the target in terms of both 𝜆max and FWHM. When
the fitness first became larger than −0.1 at ≈120 iterations, we
observed that 𝜆max was well matched at 573 nm after the volume
control of AgNO3, H2O2, and NaBH4, but the match of FWHM
was still not satisfactory. Then, further optimizations led to im-
proved fitness at ≈175 iterations where both 𝜆max and FWHM
were fit excellently after citrate volume control from 4000 to 100
μL. This tendency is generally observed that the AI model first

optimizes 𝜆max with the controls of AgNO3, H2O2, and NaBH4
reagents and then later tunes FWHM with citrate controls.

Similar results for the other two cases of 513 and 667 nm tar-
get wavelengths are provided in Figures S10 and S11 (Supporting
Information). For these cases, it also took less than 200 iterations
for optimization, which is a surprisingly small number given that
the theoretical count for a grid-based exploration for five param-
eters of reagent volumes is at least on the order of 109 in Table
S3 (Supporting Information). The comparison of efficiency be-
tween autonomous search and grid-based search will be further
discussed in the last result section. Due to the dominant weight of
𝜆max in the fitness function, the early iterations fit 𝜆max, and the
latter iterations more closely fit other factors of FWHM mainly
based on the control of citrate volumes.

The weights in the fitness function are hyperparameters and
can be set by the users’ needs. In this work, the heaviest weight
of 90% was given to the match of 𝜆max and the remaining 10%
was assigned to the other two factors of FWHM and intensity.
However, to support the general utility of our AI systems, it is
worth performing additional experiments with different weight
controls in the fitness function. Table S2 (Supporting Informa-
tion) summarizes the weight controls of those additional experi-
ments, and Tables S1 and S2, Figures S12 and S13 (Supporting
Information) show the optimization results. For all cases, the op-
timizations were successfully done within 200 iterations at most,
which is similar to the result of the original weight-setting case.
Not surprisingly, when the highest weight was assigned to other
factors of either FWHM or intensity, the strong trend of rapidly
optimizing the specific factor was clearly observed in each case.
We conclude that the optimizations will be well done for cases of
different weight assignments; however, the optimization results
will change depending on which factors users consider critically
to be matched.

2.4. Analysis of Absorption Spectrum and NP Morphology

The absorption spectra obtained by our Bayesian optimizer with
the early stopping criterion are presented in Figure 3a and are
compared to the targeted spectra obtained from the literature
for three cases of 513, 573, and 667 nm. These target wave-
lengths are only a few examples and any target absorption spec-
tra can arbitrarily be set by users’ need. Overall, they match ex-
cellently in terms of the main peak position, although some dif-
ferences were observed at the shoulder peak in the lower wave-
length range of 300–450 nm. These differences are attributed
to the fitness function design, where the match of the main
peak position (𝜆max) and width (FWHM) are the most impor-
tant parameters while the matching of other subpeaks is not
considered.

Figure 3b,c highlights the morphologies of Ag NPs for each tar-
get 𝜆max case based on transmission electron microscopy (TEM)
results. The average size of Ag NPs increases from 18.7 to 32.9
nm for absorption spectra with 𝜆max of 513 nm to 𝜆max of 667
nm, respectively, and this correlating trend between 𝜆max and
NP size is consistent with previous reports.[1,49,50] The double
peaks (main and shoulder peaks) in the absorption spectra in-
dicate the existence of two different morphologies of NPs, i.e.,
spherical shapes and plate shapes. It is well known that the dif-
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Figure 2. Bayesian optimizer with the early stopping criterion. a) The evolution of fitness values as the number of experiments progressed for the
exemplary case of the 573 nm (𝜆max) target property. The region of fitness values between −0.1 and zero is magnified on the right side. b) Evolution of
the absorption spectra at various experimental iterations. The produced absorption spectra (purple area) are compared to the target spectrum (gray line)
obtained from the literature in ref. [3] c) The evolution of reagent volumes at various experimental iterations (same as Figure 1b). The volume ranges
were between 100 and 4000 μL for all five reagents. The arrow in shadow follows and highlights the main changes during the optimization processes
and indicates that, in the early stages, the control of AgNO3, H2O2, and NaBH4 is mainly observed while the control of citrate is noticeably observed in
the later phase.

ferent shapes of Ag NPs cause absorptions at different wave-
lengths: spherical shapes lead to absorptions at 300–450 nm[51–53]

while plate shapes should be responsible for absorptions in the
larger wavelength range of 450–700 nm due to the in-plane (lat-
eral direction of the plate) dipolar resonance,[50,54,55] as agreed
with the deconvolution results of UV–vis absorption spectra in
Figure S14 (Supporting Information). The mixing of two differ-
ent shapes (spheres and plates) was confirmed by the TEM re-
sults in Figure 3c where both triangular nanoplates and spher-
ical NPs were observed at different ratios. We note that for the
case of 513 nm, both shapes were comparably found, whereas
nanoplates were dominantly found for the other two cases of 573

and 667 nm. This finding well supports that the FWHM, which
is closely related to the NP size uniformity, was found to be large
at 214.2 nm for the 513 nm target wavelength case, and relatively
much smaller (<200 nm) for the other two cases[53–55] because
the convolution of two peaks could result in a single broader
peak.

It is well-known that Ag NPs exhibit the face-centered cubic
(FCC) crystal structure with {111} flat facet and side facet.[56–58]

TEM image analysis was performed to clarify our synthesized
Ag NP facet using Titan and Technai F20 G20. In Figure
S15 (Supporting Information), selected area diffraction (SAED)
patterns revealed a 1/3{422} pattern with a lattice spacing of

Adv. Funct. Mater. 2024, 2312561 2312561 (6 of 14) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202312561 by K
orea Institute O

f Science, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Figure 3. Analysis of UV–vis absorption spectra and NP morphologies obtained by TEM. a) Comparison of the produced absorption spectra and target
spectra obtained from the literature3 for three cases of 𝜆max values of 513, 573, and 667 nm. Spectra with the gray line represents target spectra in the
literature.[3] b) The NP size distributions for the three cases based on TEM analysis. The average and deviation of NP size (𝜇, 𝜎) are included. The gray
box plot of 513nm describes only the Ag sphere. The line represents the Gaussian distribution of Ag nanoplate. c) Representative TEM images for the
three cases. The inset images show the real scenario of colloidal NP solutions, which are diluted in cuvettes for UV–vis spectroscopic characterizations.

2.5 Å, which aligns with the [111] direction.[56–58] Additionally,
{220} pattern with a lattice spacing of 1.4 Å was observed.
Typically, 1/3{422} planes are not shown in Ag FCC crystals,
and these observations suggest the existence of multiple {111}
twin planes parallel to the basal plane, which indicates a spe-
cific crystallographic structure of Ag nanoplate.[56–58] Further-
more, the side facets oriented in the [110] direction exhibited
{111} reflections with a lattice spacing of 2.36 Å. More detailed
the preparation of TEM samples is explained in Experimental
Section.

2.5. SHAP-Based Interpretation of Synthesis Variables

Using the datasets accumulated from the autonomous experi-
ments, we performed SHapley Additive exPlanations (SHAP)[59]

analysis to measure the influence of synthesis variables of five
input reagents, and the results for each target wavelength (𝜆max)
are presented in Figure 4. Independent of the target wavelengths,
the volumes of AgNO3 and H2O2 are strongly influential param-
eters whereas those of citrate and H2O are weakly influential.
The significant effects of AgNO3 (metal source), H2O2 (oxidant),

Adv. Funct. Mater. 2024, 2312561 2312561 (7 of 14) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 4. SHAP-based interpretation of synthetic variables. The SHAP analyses are shown in the center, for three cases of 𝜆max values of 513, 573, and
667 nm. In each case, the reagent with the highest impact is positioned on the top, while those with the lower impact follow. The color represents the
volume of each synthetic reagent between 100 and 4000 μL. Each left and right column show the evolutions of two strongly influential variables and two
weakly influential variables in the fitness map, respectively. The circles and arrows in the fitness maps highlight the synthetic routes during optimizations.

and NaBH4 (reductant) reagents on NP morphologies and prop-
erties are well documented in many previous reports,[51,54,60–62]

and agree well with our SHAP analysis.
Based on the SHAP analysis, the trajectories of synthesis vari-

ables during optimizations are investigated, as shown in Figure 4
where the strongly influential variables (AgNO3, H2O2) and the
weakly influential variables (citrate, H2O) are separately visual-
ized in two-dimensional fitness maps. The data clearly show that
AI broadly explores the full volume range for AgNO3 and H2O2,
and that, on the contrary, the explorations are relatively limited
for citrate and H2O. These conclusions are confirmed by dense
search points only in the corners of the corresponding fitness
maps of Figure 4. Such different observations likely occur be-
cause the volume changes of citrate or H2O have relatively little
effect on 𝜆max, and thus there are weaker driving forces for the AI
model to explore the full volume range of these reagents broadly.
This result can explain the restricted impact of citrate on FWHM
and H2O on intensity, with their contributions assigned a low
weight in the fitness function. For all target wavelength cases,
it was consistently found that the fitness becomes terrible when
the H2O2 volume is too large likely because NPs are too oxidized
and, as a result, decompose into Ag ions (Ag+).[43,62] It was also
found that the volume ratio of H2O2 to AgNO3 (H2O2/AgNO3) is
strongly correlated with 𝜆max as shown in Figure S16 (Supporting
Information) and other literature[60–62] and thus would serve as a

crucial descriptor for controlling peak positions in the absorption
spectra.

2.6. Discovery of Novel Chemical Knowledge from Autonomous
Experimentations

Although the SHAP analysis in Figure 4 revealed that, out of five
synthetic ingredients, the volume of citrate is the least influen-
tial parameter on 𝜆max of the absorption spectra, its effects on
FWHM and absorption peak intensity were found clearly notice-
able as shown in Figure 2b,c. In Figure 5a where the absorp-
tion spectrum results of two extreme citrate volumes (100 and
4000 μL) were compared with all other conditions being identi-
cal, the lower volume of citrate causes stronger and sharper ab-
sorption peaks, i.e., higher peak intensity and smaller FWHM
in Figure 5a. This trend is attributed to different NP morpholo-
gies confirmed from TEM images where NPs tend to be spherical
for the 100 μL case and were mainly formed as plate shapes for
4000 μL. Importantly, we note that the quantitative effects of cit-
rate concentrations have not been clearly manifested thus far in
the literature,[51,54,60–62] and the comparative results allowed us to
identify that the amount of citrate is key to controlling the compe-
tition between spherical and plate-shaped Ag NPs and resultant
UV–vis absorption spectra.

Adv. Funct. Mater. 2024, 2312561 2312561 (8 of 14) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 5. The quantitative effect of citrate on Ag NP synthesis and UV–vis absorption spectra. a) Comparisons of absorption spectra and NP morpholo-
gies (TEM images) between citrate volumes of 100 μL (red lines) and 4000 μL (green lines). b) The changes in absorption spectra and the corresponding
NP morphologies (TEM images) with variations in citrate concentrations from 0 mm (no use) to 0.5 mm (diluted) to 160 mm (extremely concentrated).
The absorption spectra are deconvoluted with two peaks contributed by spherical NPs and plate-shaped NPs. The inset pie chart in the TEM images
represents the ratio between two NP shapes, with blue denoting plate shapes and yellow denoting spherical shapes. c) Schematic of citrate effects on
Ag NP growth kinetics and mechanisms.

Adv. Funct. Mater. 2024, 2312561 2312561 (9 of 14) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Figure 6. Quantitative estimations of AI-based optimization efficiency. The number of experiments to complete the optimizations was shown with
varying synthesis variables. The number of synthesis variables is progressively controlled from two to five, based on the SHAP impact order in Figure 4.
To better understand the optimization efficiency, the results were compared to the theoretically computed numbers of the grid-based search scheme.
The AI modeling results are magnified on the right side.

To systematically explore the quantitative effects of citrate in a
broader range, we parameterized the citrate concentrations from
0 to 160 mm in Figure 5b instead of controlling the citrate volume
since the volume control range is limited up to the vessel capac-
ity. From the deconvolution analyses of the absorption spectra,
we found that a peak around the wavelength of 400 nm domi-
nates over the other peak at ≈600 nm for higher concentration
cases. The peak at ≈400 nm is contributed by the spherical NPs
while that ≈600 nm is attributed to the nanoplates, and these two
peaks formed with different ratios depending on the citrate con-
centrations, as shown in Figure 5b and Figure S17 (Supporting
Information). For the 160 mm case, spherical NPs were almost
exclusively found while nanoplates were dominantly found for
the other extreme case of 0.5 mm. Note that NPs were not pro-
duced without citrate (0 mm case), which was also well reported
in previous studies.[51,54] This analysis adequately explains the ex-
perimental observation that the FWHM is the largest at ≈300 nm
at intermediate concentration levels (10–20 mm) due to the con-
volution of comparably strong peaks. A more detailed analysis
of citrate concentration controls and their quantitative effects is
shown in Figure S18 (Supporting Information).

The quantitative effects of citrate concentrations on NP shapes
can be readily understood from the growth kinetics, as schema-
tized in Figure 5c. Citrate tends to preferably adsorb on Ag {111}
surfaces due to the stronger binding energy,[63–66] which results
in anisotropic NP growth, i.e., plate shapes. However, if suffi-
cient amounts of citrates were given during the NP synthesis,
they adsorb on all available binding sites on both {111} and other
surfaces such as [110] directional surfaces, which likely leads
to isotropic NP growth, i.e., spherical shapes. We emphasize
that, unlike many other recent studies of autonomous material
synthesis[25–36] which mainly focused on enhancing the search
efficiency based on the combined approach of robotics and AI
modeling, our study highlights the two capabilities for improved

search efficiency and uncovering a novel chemical knowledge (in
this case, the quantitative effect of citrate on NP formation) by
analyzing the datasets collected autonomous experiments.

The knowledge we acquired from this study mainly includes
both the optimized synthetic routes and the novel chemical
knowledge regarding the quantitative effects of citrate in Ag NP
synthesis. We believe that the role of each reagent will also be
valid in the large-scale batch synthesis as well (NP synthesis
of kilogram or tons unit);[67] however, the final results could
be inevitably affected by some external factors that were not
considered in smaller lab-scale setting, such as mass and heat
transfer[68,69] behaviors in larger reaction vessels. In other words,
these macro-kinetic factors should also be treated as critical pa-
rameters, which would quantitatively influence the optimized
synthetic routes or the chemical knowledge.

2.7. Quantitative Estimations of Search Efficiency

To quantitatively understand the search efficiency of our Bayesian
optimizer, we measured the number of experiments required to
complete the optimization with an increasing number of syn-
thetic reagents, as shown in Figure 6. These synthesis variables
were progressively added from two to five in the order of their
previously determined SHAP impact (Figure 4), i.e., AgNO3 →
H2O2 → NaBH4 → citrate → H2O. The efficiency of the AI model
was estimated by comparing it to theoretically computed num-
bers of the grid-based search scheme which is also known as a
full factorial design. Here, the grid-based search indicates that,
if each parameter range is divided into N grids for M synthetic
reagents, then the exploration number over the whole chemi-
cal space would scale exponentially as NM. Note that N is set
as 78 in our study given that the large volume control ranges
between 100 and 4000 μL, as shown in Figure S19 (Supporting

Adv. Funct. Mater. 2024, 2312561 2312561 (10 of 14) © 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
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Information). As the number of synthesis variables linearly in-
creases, grid-based explorations would become exponentially ex-
pensive, which severely limits the practical uses of such grid-
based schemes. On the other hand, our AI-based search is signif-
icantly more efficient, completing the optimizations within 200
iterations for all three cases of different target wavelengths (513,
573, and 667 nm), as shown in Figure 6 and Table S3 (Support-
ing Information). We emphasize that this search efficiency de-
pends on the number of variables. Unlike the grid-based search,
the number of required experiments increases approximately in a
linear manner with the increasing number of synthesis variables,
and this feature should be highly beneficial when exploring com-
plex chemical spaces involving multiple parameters.

Since the search efficiency is likely affected by the initial sam-
pling, we tried various seed numbers in Latin Hypercube Sam-
pling (LHS) to generate various sets of initial data points and see
how the search efficiency would be affected by the choice of initial
sampling. The test results are summarized in Figure S20 (Sup-
porting Information) where 20 initial data points were generated
for each seed number of LHS. For five different sets of initial
samplings, we demonstrated that the number of required experi-
ments to reach the optimum point was all similar ≈100 iterations
(between 86 and 117), which supports that our AI optimization
model provides excellent repeatability in terms of AI optimiza-
tion process and search efficiency.

We also note particular features of some traditional approaches
in the Design of Experiments (DOE), including LHS and the
Taguchi method.[70] LHS is basically a type of random sampling
approach that uniformly distributes the sampling points over
the whole parameter space. Although LHS ensures wide explo-
rations, its search efficiency is similar to that of grid-based search.
The Taguchi method[70] is also one of the widely employed ap-
proaches in DOE. This method nicely reflects the variations of
parameters but is limited when exploring interdependent synthe-
sis variables,[71] which is a common case in most material synthe-
sis experiments (for example, the interdependency between the
reagent volume parameter and concentration parameter). Un-
like traditional DOE approaches, AI modeling, such as Bayesian
optimizations, exhibits evident benefits, including a balanced
search mechanism between exploitation and exploration, and sig-
nificantly enhanced optimization efficiency particularly in high-
dimensional parameter spaces.

3. Conclusion

Although the demonstrations presented in this work were per-
formed on synthesizing Ag NPs and characterizing optical prop-
erties, our presented platforms and closed-loop experimental
workflows can be readily expanded to other materials such as
multicomponent NPs and other properties that may be desired in
respective applications such as catalysis, solar cells, and sensors.
The study of autonomous material development is only in its in-
fancy, and thus, several limitations need to be resolved shortly to
enable broad applicability.

First, from a hardware point of view, some experimental tools
and protocols need to be designed to be more robot-friendly
rather than human-in-the-loop. In the autonomous laboratory,
human interventions will be only minimal, and robotic execu-
tions will be dominant. However, most of the experimental hard-

ware equipment that is commercially available today requires
manual intervention, which sometimes makes the robotic oper-
ations extremely challenging to execute simple human-enabled
tasks.[72] For example, rotating the cap of vials (a type of chemical
vessel) is an easy task for humans, but requires difficult and time-
consuming processes for robots. Second, from a software point
of view, the AI models need to be substantially advanced. Efforts
to find the global minimum with the best search efficiency, even
in a complex chemical space, need to be continued. In the future,
the next-generation AI models should solve for categorical vari-
ables (synthesis sequences, selections/sequences of operations
and chemicals, etc.), in addition to continuous variables (such as
solution volumes, concentrations, and injection rate).

In summary, we developed and reported an autonomous labo-
ratory platform for the bespoke design of Ag NPs with target opti-
cal properties. This platform operates in a closed-loop manner be-
tween the batch synthesis module and UV–vis spectroscopy mod-
ule, in which the experimental planning and decision-making
were performed by a Bayesian optimizer implemented with the
early stopping criterion. Our work emphasizes the value of au-
tonomous experimentation platforms, which offer twofold bene-
fits of enhancing material developmental efficiency and elucidat-
ing novel chemical knowledge by analyzing the datasets accumu-
lated from the operations of AI robotic platforms.

4. Experimental Section
Chemical Reagents: Silver nitrate (AgNO3), sodium citrate dihydrate

(citrate), 30 wt% hydrogen peroxide solution (H2O2), and sodium boro-
hydride (NaBH4) were purchased from Sigma–Aldrich. All reagents were
used as received. All stock solutions were based on distilled water. As
shown in Figure S2c (Supporting Information), solutions of NaBH4 and
H2O2 were stored in the ice bucket and changed every 12 h to delay the
potential degradation of the reductant and oxidant. For NP precipitations,
99.8% acetone was purchased from Daejung Reagent.

Batch Synthesis: AgNO3 solution (1.25 mm), citrate solution (20 mm),
H2O2 solution (0.375 wt%), NaBH4 (10 mm), and DI water were stored
in brown bottles to protect them from light illumination. The chemical re-
actants were chosen from the literature.[51,54] The reason for controlling
the discrete variable is that the solution dispensing system has an error
of ≈1–2 μL, so it is given discretely as 50 μL to make the AI model robust
if several dispensing errors occur in the hardware. To prepare nanopar-
ticle synthesis, a robotic arm picks vials up and puts them inside a con-
strained location of a stirrer for a uniform synthesis process, as can be
seen in Figure S2b-2 (Supporting Information). In the synthesis process
sequence, NaBH4, DI water, citrate, and H2O2 were sequentially injected
with a solution dispensing system and stirred for five minutes to mix evenly
on a stirrer. After that, AgNO3 was added and stirred for 40 min at 800
rpm at RT. The vials were not sealed in the work due to possible explosion
risk when hydrogen gas is involved in the NP reduction process. Instead,
to minimize solvent vaporization, the whole synthesis process was per-
formed at RT, and all stock solutions were based on DI water. The nanopar-
ticle synthesis was performed for 40 min, and vials containing synthesized
nanoparticles were moved to the UV–vis spectroscopy module. All pro-
cesses of the batch synthesis module are shown in Video S1 (Supporting
Information).

Optical Spectroscopic Characterizations: After NP synthesis is com-
pleted, the robotic arm places the solution-filled vials into a vial holder.
Then, the arm locates the cuvette from storage to the holder and places
the cuvette into the UV–vis spectroscopic testing holder to obtain optical
properties. The absorption spectra data were extracted by a spectrometer
through an optical fiber, and a light source was used to obtain reference
and absorbance data. The cuvette was filled to 2 mL with DI water, and
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the colloidal nanoparticle solution was injected to 0.8 mL and mixed three
times via a robotic arm and linear actuator pump. The pipetting system
was followed by OpenLH.[40] The Scipy library, including the find_peaks,
peak_prominences, and peak_widths functions, was used for the extraction
of optical properties. All processes of the UV–vis spectroscopy module are
also shown in Video S1 (Supporting Information).

Fitness Function: Fitness is an evaluation function to measure the
degree of match between two absorption spectra. This can be computed
as follows:

Fitness function = −0.9 ×
|
|
|
𝜆max − 𝜆max, target

|
|
|

A𝜆max

− 0.07

× (1 − intensity) − 0.03 × FWHM
AFWHM

(2)

The fitness function reflects 𝜆max, FWHM, and peak intensity for the ab-
sorption spectra of nanoparticles. This implies multi-objective optimiza-
tion for the bespoke synthesis of NPs, although the highest weight was as-
signed to the 𝜆max term because the 𝜆max property has the highest priority
for organic solar cell applications.[3] These weight assignments would de-
pend on the researchers and the relevant experimental targets. The range
of absorption spectra was considered from 300 to 850 nm depending on
the UV–vis spectrometer. The main purpose of introducing denominators
such as A𝜆max

or AFWHM is normalization (placing between 0 and 1) so
that each factor (excluding pre-weights) can be treated fairly. The wave-
length range that was considered in this study was between 300 and 850

nm. In order to keep
|𝜆max − 𝜆max, target|

A𝜆max
between 0 and 1 for normalization

purposes, A𝜆max
was chosen as the distance from the target wavelength

to the farthest boundary wavelength (either 300 or 850 nm). As shown in
Figure S7b (Supporting Information), for the example of 𝜆max = 513 nm,
A𝜆max

was computed as 337 nm (850 nm−513 nm). For the other example
of 𝜆max = 667 nm, A𝜆max

was computed as 367 nm (667 nm−300 nm).
AFWHM is constantly set as 550 nm (= |300−850|), which is the full wave-
length range of consideration in this study. Although the total volume of
the reactions was not kept constant in each measurement and these vari-
ations may slightly affect the absorbance intensity, the effect of solution
volumes on fitness values was found very limited, even less than 0.02.
More detailed information on the fitness function is described in Figure
S7 (Supporting Information).

TEM Analysis: After NP synthesis was completed, 0.5 mL of the sam-
ple was placed into the 1 mL microcentrifuge tube. For precipitation of the
NP, 0.5 mL of acetone was added before sonication for 5 min. Then, it was
centrifuged at 13 500 rpm for 20 min. After the surfactant was removed,
0.1 mL of DI water was added. The carbon gird (200 Mesh, Copper) was
placed to filter paper on the petri dish. The prepared sample (5 μL) was
drop cast three or four times. TEM equipment (FEI Technai F20 G20, FEI
Titan) was used to obtain the morphology data of the Ag NPs and selected
area diffraction (SAED) patterns of Ag NPs. ImageJ was used to measure
the size distribution in TEM images.[73]

SHAP Analysis: SHapely Addictive exPlanations[59] (SHAP) analysis is
a game theoretic approach to calculate the influence order of variables
when the model predicts some outputs. A higher SHAP value implies a
large impact of the variable on the model. KernelExplainer with LogitLink
utilizes weighted linear regression to compute SHAP values from models
for each epoch cumulatively through experimental data. The SHAP values
were implemented to draw the bee swarm plot colored by the value of
the synthesis variable via the summary_plot function. The fitness surface
based on the accumulated experimental data points was also visualized,
as shown in Figure 4. Here, each experimental datum is composed of a
synthesis recipe and fitness value. The fitness surface was made based on
the linear interpolation libraries implemented in MATLAB.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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